Solar Energy News  
Gamma-Ray Bursts Active Longer Than Thought

This artwork depicts the central engine of a gamma-ray burst. A powerful jet of radiation and fast-moving particles blasts its way out of the central region of a dying star. The jet is presumably powered by material spiraling into a black hole or neutron star. Multiple episodes of infall provides fuel for the engine, leading to the burst and later X-ray flares. Credit: NASA / SkyWorks Digital.
by Staff Writers
Greenbelt, MD (SPX) May 23, 2007
Using NASA's Swift satellite, astronomers have discovered that energetic flares seen after gamma-ray bursts (GRBs) are not just hiccups, they appear to be a continuation of the burst itself. GRBs release in seconds the same amount of energy our Sun will emit over its expected 10 billion-year lifetime. The staggering energy of a long-duration GRB (lasting more than a few seconds) comes from the core of a massive star collapsing to form a black hole or neutron star.

In current theory, inrushing gas forms a disk around the central object. Magnetic fields channel some of that material into two jets moving at near-light speed. Collisions between shells of ejected material within the jet trigger the actual GRB.

Early in the mission, Swift's X-ray Telescope (XRT) discovered that the initial pulse of gamma-rays, known as prompt emission, is often followed minutes to hours later by short-lived but powerful X-ray flares. The flares suggested - but did not prove - that GRB central engines remain active long after the prompt emission.

After analyzing GRB 060714, named for its detection date of July 14, 2006, Hans Krimm of Universities Space Research Association, Columbia, Md. and NASA's Goddard Space Flight Center in Greenbelt, Md., and eight colleagues, have demonstrated that X-ray flares are indeed a continuation of the prompt emission, showing that GRB central engines are active much longer than previously thought.

Swift's Burst Alert Telescope (BAT) picked up the initial GRB in the constellation Libra. Then, from about 70 to 200 seconds after the initial burst, the BAT and XRT registered five flares.

Each flare exhibited rapid and large-scale variability in intensity, but the overall energy steadily diminished from flare to flare. Moreover, the peak photon energy of each flare "softened" by progressing from gamma-rays to X-rays (from higher to lower energy).

The prompt gamma-ray emission and the subsequent X-ray flares appear to form a continuously connected and evolving succession of events. "This pattern points to a continuous injection of energy from the central engine, perhaps fueled by sporadic infall of material onto a black hole. The black hole just keeps gobbling up gas and the engine keeps spewing out energy," says Krimm, whose paper is scheduled for publication in the August 10 Astrophysical Journal.

The rapid and large-scale variability of the X-ray flares argues strongly against the idea that they come from jets sweeping up the surrounding gas. Since the observed emission comes from a wide region, the afterglow should vary smoothly with time. Nobody has come up with a viable explanation for why the surrounding material would be so lumpy to lead to such rapid variability.

"This particular GRB had a series of flares over a wide range in time that were bright enough that we could study their properties in detail," says study coauthor Jonathan Granot of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, Stanford, Calif.

"It clearly shows a gradual evolution with time in the properties of the flares within the same GRB, while in other GRBs there are typically only one or two flares that are bright enough to be studied in detail, making it very hard to reach a similar conclusion."

"This is a very important result," adds Swift principal investigator and study coauthor Neil Gehrels of NASA Goddard. "By chance, if you look at enough bursts you'll find the one that opens the door. GRB 060714 shows that everything happening in the first few minutes is driven by the central engine."

Related Links
Swift at NASA
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Most Energetic Form Of Light Can Be Produced In Areas Dominated By Bright Young Stars
Nashville TN (SPX) Mar 20, 2007
In 2002, when astronomers first detected cosmic gamma rays - the most energetic form of light known - coming from the constellation Cygnus they were surprised and perplexed. The region lacked the extreme electromagnetic fields that they thought were required to produce such energetic rays.







  • Revamped, Renewed, Restarted: High Flux Isotope Reactor Back On Line
  • Blair Argues For Nuclear Power As Government Publishes Proposals
  • China Sets Up Government Nuclear Power Technology Corporation
  • Russia And Kazakhstan Join Forces In The Nuclear Sector

  • CO2 Emissions Increasing Faster Than Expected
  • Climate Change, Energy Security Pose Risk To Mideast Stability
  • DiCaprio Bites Back With Quip That He Caught A Train Across The Atalanic
  • US Trying To Weaken G8 Climate Change Communique

  • Climate Change Threatens Wild Relatives Of Key Crops
  • Journal Details How Global Warming Will Affect The World's Fisheries
  • Spud Origin Controversy Solved
  • Decimation Of Bee Colonies Has Various Possible Causes

  • New Wrinkle In Evolution With Man-Made Proteins
  • Professor Helps Develop Techniques To Reduce Threat Against Honeybees
  • Miracle Of Evolution Fights For Survival In Death Valley
  • Soaring Shark Fin Demand Driving Extinction Threat

  • Team America Rocketry Challenge Crowns New Champion
  • Orion Ignites The Dreams Of A Rocket Engineer
  • Methane May Allow Rockets To Go Beyond The Fringes Of Space
  • NASA To Build New Stand At Stennis To Test Ares Rocket Engines



  • Tracking A Hot Spot In The Center Of The Biggest Ocean On Earth
  • MetOp-A Takes Up Service
  • General Dynamics Awarded Contract For NASA's Landsat Data Continuity Mission Study
  • ESA Presents The Sharpest Ever Satellite Map Of Earth

  • Pitt Researchers Create New Form Of Matter
  • A Not-So-Heavy Metal As Electrical Conductivity In Textiles Becomes Available
  • Improving Security Through Satellite Telecommunications
  • From Ink To Optics, Study Of Particle Mixtures Yields Fundamental Insights

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement