Solar Energy News  
CHIP TECH
Generating high-quality single photons for quantum computing
by Rob Matheson, MIT News Office
Boston MA (SPX) May 23, 2019

file illustration only

MIT researchers have designed a way to generate, at room temperature, more single photons for carrying quantum information. The design, they say, holds promise for the development of practical quantum computers.

Quantum emitters generate photons that can be detected one at a time. Consumer quantum computers and devices could potentially leverage certain properties of those photons as quantum bits ("qubits") to execute computations. While classical computers process and store information in bits of either 0s or 1s, qubits can be 0 and 1 simultaneously. That means quantum computers could potentially solve problems that are intractable for classical computers.

A key challenge, however, is producing single photons with identical quantum properties - known as "indistinguishable" photons. To improve the indistinguishability, emitters funnel light through an optical cavity where the photons bounce back and forth, a process that helps match their properties to the cavity. Generally, the longer photons stay in the cavity, the more they match.

But there's also a tradeoff. In large cavities, quantum emitters generate photons spontaneously, resulting in only a small fraction of photons staying in the cavity, making the process inefficient. Smaller cavities extract higher percentages of photons, but the photons are lower quality, or "distinguishable."

In a paper published in Physical Review Letters, the researchers split one cavity into two, each with a designated task. A smaller cavity handles the efficient extraction of photons, while an attached large cavity stores them a bit longer to boost indistinguishability.

Compared to a single cavity, the researchers' coupled cavity generated photons with around 95 percent indistinguishability, compared to 80 percent indistinguishability, with around three times higher efficiency.

"In short, two is better than one," says first author Hyeongrak "Chuck" Choi, a graduate student in the MIT Research Laboratory of Electronics (RLE). "What we found is that in this architecture, we can separate the roles of the two cavities: The first cavity merely focuses on collecting photons for high efficiency, while the second focuses on indistinguishability in a single channel. One cavity playing both roles can't meet both metrics, but two cavities achieves both simultaneously."

Joining Choi on the paper are: Dirk Englund, an associate professor of electrical engineering and computer science, a researcher in RLE, and head of the Quantum Photonics Laboratory; Di Zhu, a graduate student in RLE; and Yoseob Yoon, a graduate student in the Department of Chemistry.

The relatively new quantum emitters, known as "single-photon emitters," are created by defects in otherwise pure materials, such as diamonds, doped carbon nanotubes, or quantum dots. Light produced from these "artificial atoms" is captured by a tiny optical cavity in photonic crystal - a nanostructure acting as a mirror. Some photons escape, but others bounce around the cavity, which forces the photons to have the same quantum properties - mainly, various frequency properties. When they're measured to match, they exit the cavity through a waveguide.

But single-photon emitters also experience tons of environmental noise, such as lattice vibrations or electric charge fluctuation, that produce different wavelength or phase. Photons with different properties cannot be "interfered," such that their waves overlap, resulting in interference patterns. That interference pattern is basically what a quantum computer observes and measures to do computational tasks.

Photon indistinguishability is a measure of photons' potential to interfere. In that way, it's a valuable metric to simulate their usage for practical quantum computing. "Even before photon interference, with indistinguishability, we can specify the ability for the photons to interfere," Choi says. "If we know that ability, we can calculate what's going to happen if they are using it for quantum technologies, such as quantum computers, communications, or repeaters."

In the researchers' system, a small cavity sits attached to an emitter, which in their studies was an optical defect in a diamond, called a "silicon-vacancy center" - a silicon atom replacing two carbon atoms in a diamond lattice. Light produced by the defect is collected into the first cavity. Because of its light-focusing structure, photons are extracted with very high rates. Then, the nanocavity channels the photons into a second, larger cavity. There, the photons bounce back and forth for a certain period of time. When they reach a high indistinguishability, the photons exit through a partial mirror formed by holes connecting the cavity to a waveguide.

Importantly, Choi says, neither cavity has to meet rigorous design requirements for efficiency or indistinguishability as traditional cavities, called the "quality factor (Q-factor)." The higher the Q-factor, the lower the energy loss in optical cavities. But cavities with high Q-factors are technologically challenging to make.

In the study, the researchers' coupled cavity produced higher quality photons than any possible single-cavity system. Even when its Q factor was roughly one-hundredth the quality of the single-cavity system, they could achieve the same indistinguishability with three times higher efficiency.

The cavities can be tuned to optimize for efficiency versus indistinguishability - and to consider any constraints on the Q factor - depending on the application. That's important, Choi adds, because today's emitters that operate at room temperature can vary greatly in quality and properties.

Next, the researchers are testing the ultimate theoretical limit of multiple cavities. One more cavity would still handle the initial extraction efficiently, but then would be linked to multiple cavities that photons for various sizes to achieve some optimal indistinguishability. But there will most likely be a limit, Choi says: "With two cavities, there is just one connection, so it can be efficient. But if there are multiple cavities, the multiple connections could make it inefficient. We're now studying the fundamental limit for cavities for use in quantum computing."

Research Report: "Cascaded cavities boost the indistinguishability of imperfect quantum emitters"


Related Links
Massachusetts Institute of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Mobile chip titan Qualcomm faces setback with US antitrust ruling
Washington (AFP) May 22, 2019
Smartphone chip giant Qualcomm suffered a fresh blow in its antitrust battle as a US federal judge ruled that it "strangled competition" for years at the expense of consumers and device makers. Qualcomm shares sank some 10.8 percent Wednesday to close at a one-month low after the ruling that the company violated antitrust law, in a case with major implications for the smartphone market. US District Judge Lucy Koh ordered Qualcomm to change its pricing and sales practices, after finding it "engag ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Where there's waste there's fertilizer

When biodegradable plastic isn't

Electrode's 'hot edges' convert CO2 gas into fuels and chemicals

The secrets of secretion: isolating eucalyptus genes for oils, biofuel

CHIP TECH
Council of Europe explores AI to reshape prisons

New AI sees like a human, filling in the blanks

With a hop, a skip and a jump, high-flying robot leaps through obstacles with ease

Dog-like robot made by students jumps, flips and trots

CHIP TECH
Can sound protect eagles from wind turbine collisions?

UK hits historic coal-free landmark

BayWa r.e. sells its first Australian wind farms to Epic Energy

The complicated future of offshore wind power in the US

CHIP TECH
US Postal Service to launch test of self-driving trucks

Tata Motors profits fall 47% amid Jaguar Land Rover China slowdown

Flying cars mooted for Paris' public transport network

German startup to offer electric air taxis 'by 2025'

CHIP TECH
Researchers set new mark for highest-temperature superconductor

New surface treatment could improve refrigeration efficiency

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth

Aerojet Rocketdyne and ZAF Energy Team Up

CHIP TECH
Bio-inspired material targets oceans' uranium stores for sustainable nuclear energy

Iran to increase uranium, heavy water production: official

Three Mile Island nuclear plant to close by September 30

Experimental device generates electricity from the coldness of the universe

CHIP TECH
World nations failing the poorest on energy goals: study

'Step-change' in energy investment needed to meet climate goals: IEA

Czech power group CEZ ups profit, sales on higher output

Adding satnav to turn power grids into smart systems

CHIP TECH
Eastern forests shaped more by Native Americans' burning than climate change

Brazil indigenous chief Raoni meets pope as Amazon threat rises

Gabon leader sacks vice president, forestry minister

Amount of carbon stored in forests reduced as climate warms









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.