Subscribe free to our newsletters via your
. Solar Energy News .




TECH SPACE
Ghost writing the whip
by Staff Writers
Washington DC (SPX) Jun 30, 2014


This is a schematic illustration of marked ghost imaging. Image courtesy W. Chen and X. Chen/NUS. For a larger version of this image please go here.

"Ghost imaging" sounds like the spooky stuff of frivolous fiction, but it's an established technique for reconstructing hi-res images of objects partly obscured by clouds or smoke. Now a group of researchers at the National University of Singapore (NUS) is applying ghost imaging to secure stored or shared electronic data.

Described in the journal Applied Physics Letters, from AIP Publishing, the work establishes "marked ghost imaging" technology as a new type of multi-layer verification protocol for data storage or transmission.

By "ghosting up" data, the scientists can hide the contents of electronic communications from hackers, deconstructing it into multiple foggy files that make no sense on their own and can only be reconstructed by someone who has the right decoder key (technically called a "reference intensity sequence").

"The sender can send out a huge number of different reference intensity sequences -- only one is authentic, and others are counterfeit -- for confusing the attackers," said Wen Chen, an author who conducted the work with NUS professor Xudong Chen.

"This novel method based on ghost imaging can dramatically enhance system security, and it may be straightforward to apply it to other optical security systems," Chen added.

How the Technology Works
Information security has become one of the most important social and academic topics in recent years as massive increases in data storage have coincided with rapidly developing modern technologies for accessing that data virtually anywhere.

Imaging technology has attracted more and more attention in computer security circles because of its promise to enhance the security of data storage or transmission, which is what led Chen and colleagues to develop their marked ghost imaging technology based on traditional optical ghost imaging.

Traditional ghost imaging uses digital cameras to detect light bouncing directly off of an object as well as light that does not directly bounce from the object to the detector.

It allows solid images of objects to be reconstructed by shining light into a beamsplitter and separating it into two correlated beams -- one directed at the object and the other, reference arm directed at the camera lens. When these two beams are correlated, they create a silhouette image of the object.

Chen and his colleague report that although virtual computation, using software, is applied, they can do the same thing with real experiments in the future study. Their technology allows them to create highly-sparse reference intensity patterns that act as security keys and lowly-sparse intensity patterns as useful parameters for recovering the target, the information being decoded.

To compress the data and confuse the attackers, the reference-arm patterns are then processed to 'rebuild' one new reference intensity sequence. This is crucial because requiring only one rebuilt intensity sequence doesn't increase the system's complexity, while allowing multiple marks to be hidden.

Future research includes analysis of the upper limit of keys that can be embedded without increasing the system's complexity and developing greater robustness of the system against attacks.

The article, "Marked ghost imaging" is authored by Wen Chen and Xudong Chen. It will be published in the journal Applied Physics Letters on June 24, 2014.

.


Related Links
American Institute of Physics
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Crowdsourcing the phase problem
Chester, UK (SPX) Jun 23, 2014
Compared with humans, computers have the capacity to solve problems at much greater speed. There are many problems, however, where computational speed alone is insufficient to find a correct or optimal solution, for example because the parameter "space" cannot be fully searched in a practical time. In contrast, the human mind can formulate expert knowledge specific for particular problems, provi ... read more


TECH SPACE
A Win-Win-Win Solution for Biofuel, Climate, and Biodiversity

Water-cleanup catalysts tackle biomass upgrading

In Austria, heat is 'recycled' from the sewer

Genome could unlock eucalyptus potential for paper, fuel and fiber

TECH SPACE
Collaborative learning -- for robots

IBM's Watson app whips up Big Data in the kitchen

Japan unveils 'world's first' android newscaster

Japan robot firm showcases thought-controlled suits

TECH SPACE
VentAir Introduces Groundbreaking Wind Energy Innovation

Offshore wind dominates British renewable power sector

Scotland boasts of financial weight behind climate change fight

Massachusetts to host sixth U.S. lease for offshore wind energy

TECH SPACE
Google Android software spreading to cars, watches, TV

Toyota names price for new fuel cell car

NMSU PACE team develops mobile transportation device

Hybrid Vehicles More Fuel Efficient In India, China Than in US

TECH SPACE
Israeli companies order Aura's power generation system

Study helps unlock mystery of high-temp superconductors

Cambridge team breaks superconductor world record

Researchers developing cheap, better-performing lithium-ion batteries

TECH SPACE
Angry scenes as Japan's TEPCO shareholders demand end to nuclearw

Fukushima operator eyes wholesale power market in Europe: report

Westinghouse Extends New-plant Market with Specialized Seismic Option

Single Optical Fiber Combines 100s Of Sensors To Monitor Harsh Environments

TECH SPACE
Malware aims at US, Europe energy sector: researchers

Net energy analysis should become a standard policy tool

New voluntary measure aimed at protecting U.S. energy from cyberattacks

Zimbabwe switches $1.3 bn China power tender: minister

TECH SPACE
Australian greens hail Tasmanian Wilderness decision

Conifers may give way to a more broad-leafed forest in the next century

Discovery of a bud-break gene could lead to trees adapted for a changing climate

UNESCO says all of Tasmanian forest to stay protected




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.