Solar Energy News  
OUTER PLANETS
Giant Impact Disrupted Jupiter's Core
by Staff Writers
Bern, Switzerland (SPX) Aug 15, 2019

illustration only

New interior models of Jupiter based on data gathered by NASA's Juno mission suggested that the giant gas planet might not have a small compact core but rather a diluted, "fuzzy" one. Now, an international team with researchers of the University of Zu"rich and the NCCR PlanetS has found an explanation for this surprising Juno result. A giant impact occurring shortly after Jupiter's formation may have disrupted and diluted its original compact core.

NASA's Juno probe orbiting Jupiter since July 2016 has not only delivered stunning images but also unexpected results about the interior of the planet. To fit the very accurate gravity data of Jupiter measured by Juno, researchers had to revise their ideas about the planet's core.

"Instead of a small compact core as we previously assumed, Jupiter's core is 'fuzzy,'" explains Ravit Helled. She is professor at the University of Zu"rich, member of the NCCR PlanetS and team member of the Juno mission: "This means that the core is likely not made of only rocks and ices but is also mixed with hydrogen and helium and there is a gradual transition as opposed to a sharp boundary between the core and the envelope."

How come? "One could make the joke and say that when planetary scientists cannot find a solution they invoke a giant impact," says Ravit Helled.

Not a joke, but a good explanation in this case, as an international team with researchers from China, Japan, Switzerland and the US shows in its paper published by the journal "Nature." Lead author Shang-Fei Liu, now professor at Sun Yat-sen University in Zhuhai, China, simulated different collisions between the young Jupiter and planetary embryos.

The results of the computer simulations presented in the paper demonstrate that such a collision actually could have shattered Jupiter's primordial compact core and mixed the heavy elements with the inner envelope. But it needed an enormous impactor 10 times the mass of Earth and the collision had to be head-on.

Simulating Evolution Over Billions of Years
Interested in Liu's research Ravit Helled invited him for a research stay in Zu"rich. Together they wanted to find out whether the diluted core produced by the giant impact could persist over billions of years until today. "For that we used our newly developed planet evolution code," explains the Zu"rich professor.

PhD student Simon Muller had worked on the code as part of his doctoral thesis and he also ran the simulations of Jupiter's evolution. "We are talking about very different timescales," Simon Muller clarifies. "Giant impacts occurred early in the history of the solar system and lasted for a short time, while the evolution is a long process up to today, 4.5 billions of years after Jupiter's formation." These different timescales require separate computational methods for the impact and the thermal evolution.

The Swiss part of the collaboration took the output of the giant impact simulation as an input for the evolution calculation to follow the heat transport and the mixing of heavy elements within the planet. It was shown that, depending on the assumed parameters, there are solutions with a diluted core that persist until today. "That makes the case for the giant impact much stronger," says Ravit Helled. Other co-authors of the study looked at the statistics of the impacts and found out that such a head-on collision with a big impactor seems very likely.

"Everyone had a unique contribution, and this research is remarkably international. So, it was a really nice and rather diverse collaboration," summarizes Ravit Helled: "It seems that such violent impacts were very common in the young solar system and interestingly, they played an important role in shaping the planetary characteristics - not only for Jupiter - as we suggest in this paper - but also for other planets - to explain the Earth's moon, the high metal-to-rock fraction in Mercury, and Uranus' tilt."

Research Report: "The Formation of Jupiter's Diluted Core by a Giant Impact"


Related Links
Planets At The University Of Bern
The million outer planets of a star called Sol


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


OUTER PLANETS
Young Jupiter Was Smacked Head-On by Massive Newborn Planet
Houston TX (SPX) Aug 15, 2019
A colossal, head-on collision between Jupiter and a still-forming planet in the early solar system, about 4.5 billion years ago, could explain surprising readings from NASA's Juno spacecraft, according to a study this week in the journal Nature. Astronomers from Rice University and China's Sun Yat-sen University say their head-on impact scenario can explain Juno's previously puzzling gravitational readings, which suggest that Jupiter's core is less dense and more extended that expected. "Thi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

OUTER PLANETS
Protein factors increasing yield of a biofuel precursor in microscopic algae

EU slaps anti-subsidy duties on Indonesian biodiesel

Supercomputing improves biomass fuel conversion

Novel catalysis approach reduces carbon dioxide to methane

OUTER PLANETS
Evolving computers from tools to partners in cyber-physical system design

Employees less upset at being replaced by robots than by other people

Roach-inspired robot nearly as fast as real thing, unsquashable

A computer that understands how you feel

OUTER PLANETS
Growth of wind energy points to future challenges, promise

E.ON announces 440 MW southern Texas windfarm

Kenya launches Africa's biggest wind farm

Stanford study shows how to improve production at wind farms

OUTER PLANETS
Uber shares skid as quarterly loss soars

Lyft gets boost from improving outlook

Lyft suspends e-bikes after battery fires

Five things to know about VW's 'dieselgate' scandal

OUTER PLANETS
Supercapacitors turbocharged by laxatives

How much energy storage costs must fall to reach renewable energy's full potential

Physicists make graphene discovery that could help develop superconductors

OXIS Energy to develop proof-of-concept lightweight lithium sulfur cells for BYE AEROSPACE

OUTER PLANETS
Framatome, Warsaw University of Technology to establish nuclear energy training and development programs

UN nuclear watchdog to have new chief in place by January

US renews waivers for Iran civil nuclear projects

Framatome deploys new tool for innovative inspection of baffle bolts in reactor vessels

OUTER PLANETS
Northern Irish pensioner thrives in off grid cottage

Oslo wants to reduce its emissions by 95 percent by 2030

Global warming = more energy use = more warming

Big energy discussion 'scrubbed from record' at UN climate talks

OUTER PLANETS
Norway blocks 30 mn-euro deforestation subsidy to Brazil

Mexican start-up fights air pollution with artificial trees

Stanford-led study gauges trees' and carbon sequestration

African forest elephant helps increase biomass and carbon storage









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.