Subscribe free to our newsletters via your
. Solar Energy News .




EARLY EARTH
Giving Ancient Life Another Chance to Evolve
by Staff Writers
Atlanta GA (SPX) Jul 13, 2012


File image: E. coli.

It's a project 500 million years in the making. Only this time, instead of playing on a movie screen in Jurassic Park, it's happening in a lab at the Georgia Institute of Technology. Using a process called paleo-experimental evolution, Georgia Tech researchers have resurrected a 500-million-year-old gene from bacteria and inserted it into modern-day Escherichia coli(E. coli) bacteria.

This bacterium has now been growing for more than 1,000 generations, giving the scientists a front row seat to observe evolution in action.

"This is as close as we can get to rewinding and replaying the molecular tape of life," said scientist Betul Kacar, a NASA astrobiology postdoctoral fellow in Georgia Tech's NASA Center for Ribosomal Origins and Evolution.

"The ability to observe an ancient gene in a modern organism as it evolves within a modern cell allows us to see whether the evolutionary trajectory once taken will repeat itself or whether a life will adapt following a different path."

In 2008, Kacar's postdoctoral advisor, Associate Professor of Biology Eric Gaucher, successfully determined the ancient genetic sequence of Elongation Factor-Tu (EF-Tu), an essential protein in E. coli. EFs are one of the most abundant proteins in bacteria, found in all known cellular life and required for bacteria to survive. That vital role made it a perfect protein for the scientists to answer questions about evolution.

After achieving the difficult task of placing the ancient gene in the correct chromosomal order and position in place of the modern gene within E. coli, Kacar produced eight identical bacterial strains and allowed "ancient life" to re-evolve.

This chimeric bacteria composed of both modern and ancient genes survived, but grew about two times slower than its counterpart composed of only modern genes.

"The altered organism wasn't as healthy or fit as its modern-day version, at least initially," said Gaucher, "and this created a perfect scenario that would allow the altered organism to adapt and become more fit as it accumulated mutations with each passing day."

The growth rate eventually increased and, after the first 500 generations, the scientists sequenced the genomes of all eight lineages to determine how the bacteria adapted. Not only did the fitness levels increase to nearly modern-day levels, but also some of the altered lineages actually became healthier than their modern counterpart.

When the researchers looked closer, they noticed that every EF-Tu gene did not accumulate mutations. Instead, the modern proteins that interact with the ancient EF-Tu inside of the bacteria had mutated and these mutations were responsible for the rapid adaptation that increased the bacteria's fitness.

In short, the ancient gene has not yet mutated to become more similar to its modern form, but rather, the bacteria found a new evolutionary trajectory to adapt.

These results were presented at the recent NASA International Astrobiology Science Conference. The scientists will continue to study new generations, waiting to see if the protein will follow its historical path or whether it will adopt via a novel path altogether.

"We think that this process will allow us to address several longstanding questions in evolutionary and molecular biology," said Kacar. "Among them, we want to know if an organism's history limits its future and if evolution always leads to a single, defined point or whether evolution has multiple solutions to a given problem."

.


Related Links
Georgia Tech
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EARLY EARTH
Ancient life 're-evolves' in Georgia lab
Atlanta (UPI) Jul 11, 2012
Georgia Tech researchers say they've resurrected a 500-million-year-old gene from bacteria and inserted it into modern-day Escherichia coli (E. coli) bacteria. The resurrected bacterium has been growing for more than 1,000 generations, providing scientists a chance to observe evolution in action, the university announced Wednesday. "This is as close as we can get to rewinding and ... read more


EARLY EARTH
New biofuel process dramatically improves energy recovery

Denmark can triple its biomass production and improve the environment

Researchers tap into genetic reservoir of heat-loving bacteria

Prairie cordgrass: Highly underrated

EARLY EARTH
NASA 3-D App Gives Public Ability to Experience Robotic Space Travel

Researchers Develop an Artificial Cerebellum than Enables Robotic Human-like Object Handling

NASA Workshop Discusses How On-Orbit Robotic Satellite-Servicing Becomes Reality

Biomechanical legs are a giant step for robot-kind

EARLY EARTH
GL Garrad Hassan releases update of WindFarmer 5.0

U.S moves massive wind farm plan forward

Belgium wind farm a go after EIB loan

Opponents force Wales wind farm hearings

EARLY EARTH
Skoda Auto posts record first-half sales on China surge

Carnegie Mellon's smart headlight system will have drivers seeing through the rain

EU push for car CO2 cuts faces industry, green criticism

China auto sales up 9.9% in June: industry group

EARLY EARTH
Natural Power establishes Wave and Tidal office in Orkney

Japan protests over more China ships near islands

Philippines slams Chinese 'duplicity, intimidation'

Natural gas is a much needed tool to battle global warming

EARLY EARTH
EU warns Lithuania over nuclear decommissioning

S. Korea prosecutors charge 32 over nuclear graft

Swiss nuclear safety watchdog gives stations the all-clear

Canada nuclear scientists strike

EARLY EARTH
La Croix Valmer city selects AREVA's electricity storage system

Increase in consumers choosing to combine renewable energy options

EU ministers launch project bonding effort

Extreme weather conditions cost EU's transport system at least 15 billion euro annually

EARLY EARTH
Rising CO2 in atmosphere also speeds carbon loss from forest soils

Taiwan indicts loggers for axing 2000-year-old trees

Study Slashes Deforestation Carbon Emission Estimate

Scientists develop first satellite deforestation tracker for whole of Latin America




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement