Solar Energy News  
TECH SPACE
Glass-forming ability: fundamental understanding leading to smart design
by Staff Writers
Tokyo, Japan (SPX) May 24, 2018

An increase in the glass-forming ability is signaled by a depression of the melting temperature towards its minimum at triple points.

Glass is a familiar concept for most: a dependable substance known and used for thousands of years. However, there is more to glass than meets the eye. Glass is actually an amorphous material with arguably as much in common with a liquid as with the solid most would consider it to be. Glass contains atoms locked into place in a random arrangement and to those more familiar with considering the atomic level, "a glass" is the term for any substance in a state that fits this description, leading to a surprisingly broad scope.

The tendency for materials to show glassy behavior is known as "glass-forming ability" and given the undeniable success of the familiar silicon-based material, it is easy to understand why some researchers take acquiring a better understanding of such behavior seriously.

A trio of researchers centered at the Institute of Industrial Science at The University of Tokyo recently investigated glass-forming behavior by simulating two model systems whose glass-forming ability could be tuned by a single external parameter. Their wide-reaching findings were published in Physical Review X.

"Glass-forming ability is often influenced by competing effects that suppress the local order that would lead to crystal formation," study corresponding author Hajime Tanaka says. "Our findings show that this behavior is governed by a single parameter that we called the 'thermodynamic interface penalty'."

When a material is a mixture of different components, the competition between the different systems trying to behave in their natural way during cooling can lead to formation of a glass. By looking at two general systems, the team were able to decouple some of the contributing factors in this process to gain a fundamental understanding of what is occurring.

"Our work may provide a general physical principle for controlling glass-forming behavior," lead author John Russo says. "The findings could extend to understanding glassy behavior in a variety of systems with competing ordering. This could include structural, magnetic, electronic, charge, or dipolar ordering, which would clearly translate to a very broad range of potential applications down the line."

The possibility of using the fundamental findings to control the synthesis and processing of materials such as metallic alloys and phase-change materials, paves the way for physics-driven design in numerous areas of materials science.

Research Report: "Glass forming ability in systems with competing orderings"


Related Links
Institute of Industrial Science, The University of Tokyo
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Astonishing effect enables better palladium catalysts
Vienna, Austria (SPX) May 24, 2018
The taste of the chocolate cake's icing should not depend on whether it is served on a porcelain or a silver plate. Similarly, for chemical reactions on the surface of large precious metal grains, the substrate (the so-called support) should not play a crucial role. The catalytic grains often have a diameter spanning many thousands of atoms, and the support on which they rest should thus not affect chemical reactions on the other side far away from the interface - at least this was believed to dat ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Advanced biofuels can be produced extremely efficiently, confirms industrial demonstration

Technique doubles conversion of CO2 to plastic component

New catalyst upgrades greenhouse gas into renewable hydrocarbons

Scientists have deciphered the chemical reaction mechanism critical for cleaner combustion

TECH SPACE
Google pushes artificial intelligence for upgraded news app

Robotic assembly of the world's smallest house

Lu resignation a blow for Baidu's push into AI, analysts say

Robot teaches itself how to dress people

TECH SPACE
European wind energy generation potential in a warmer world

New York to world's largest offshore wildlife aerial survey

German utility E.ON sees renewable sector growth

Germany's E.ON wants even bigger wind footprint

TECH SPACE
China to cut auto tariffs on July 1 as trade tensions ease

Uber hit with harassment suit following policy shift

Alternative vehicle sales stall in United States

Dealerships trash talk electric cars: study

TECH SPACE
China's Tianqi raises profile as a top lithium supplier with stake in Chile's SQM

Self-assembling 3D battery would charge in seconds

Simple equation directs creation of clean-energy catalysts

New device could increase battery life of electronics by a hundred-fold

TECH SPACE
Framatome to provide Dominion Energy with steam generator services

Supreme Court to rule on largest uranium deposit in US

Nuclear Waste Management Organization Signs Co-Operation Agreements With International Partners

Demonstration proves nuclear fission system can provide space exploration power

TECH SPACE
Bitcoin estimated to use half a percent of the world's electric energy by end of 2018

Top US court to examine India power plant complaint

Portugal's EDP rejects Chinese takeover offer

New phase of globalization could undermine efforts to reduce CO2 emissions

TECH SPACE
New technique reveals details of forest fire recovery

Forest loss in one part of US can harm trees on the opposite coast

India's toy carvers threatened by deforestation

Amazonian rainforests gave birth to the world's most diverse tropical region









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.