Subscribe free to our newsletters via your
. Solar Energy News .




CLIMATE SCIENCE
Global carbon cycle may require reappraisal of historical climate events
by Staff Writers
Miami FL (SPX) Sep 17, 2014


This photo shows roots casts observed between 131-132 meters below the mud pit. These casts are situated 0.2 meters below the subaerial exposure surface (not shown). Root casts are the darker grey irregular shapes observed in the photo with round, unfilled pore spaces. Scale bar on the right are 1 cm increments. Image courtesy UM Rosenstiel School of Marine and Atmospheric Science. For a larger version of this image please go here.

A recent study of the global carbon cycle offers a new perspective of Earth's climate records through time. Scientists at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science suggest that one of the current methods for interpreting ancient changes in the concentration of carbon dioxide in the atmosphere and oceans may need to be re-evaluated.

The UM Rosenstiel School researchers measured the abundance of carbon-12 and carbon-13 isotopes in both the organic matter and carbonate sediments found in a nearly 700-meter marine sediment core from the Great Bahama Bank.

The analyses showed a change to lower amounts of the rare isotope of carbon (carbon-13) in both the organic and inorganic materials as a result of several periods of sub-aerial exposure during the Pleistocene ice ages, which took place over the past two million years.

"Without geological context, classical interpretations of this dataset would suggest that there was a significant change in global carbon cycling, or a very large change in the concentration of atmospheric CO2 during the past five-million years," said Amanda Oehlert, UM Rosenstiel School alumna and lead author of the study.

"These findings show how important it is to understand the geological context of carbon isotope records."

Scientists refer to the global carbon cycle as the natural processes by which carbon is cycled through the different components of the Earth, including the mantle, atmosphere, plants, the oceans, and sediments.

The results showed that post-depositional changes in sediments could cause carbonate and organic values to covary through time, a process that had never been observed before, and has been considered impossible. The new findings suggest that similar trends in carbon isotopes values through time do not always provide conclusive information about the amount of CO2 in the atmosphere or how carbon was cycled through the atmosphere and oceans.

Current scientific theory suggests that post-depositional physical, chemical, or biological processes produce contrasting carbonate and organic carbon isotope records.

Currently, carbon isotope records of carbonate and organic material that show the same trends through time, or those that are highly correlated, are considered accurate records of changes in the global carbon cycle and concentrations of CO2 in the atmosphere and oceans.

"The observation that simultaneous changes in the amount of carbon-13 in carbonate and organic carbon isotope records can be caused by post-depositional changes is in direct contrast to current interpretations of these paired records," said Oehlert.

"These findings highlight the importance of understanding where and how the sediments and organic matter were originally produced, how they were transported to the sea floor, and what physical, chemical or biological changes may have happened to them after they were deposited."

Scientists evaluate how the global carbon cycle changes through time by studying accumulations of carbonate skeletons and organic matter produced by marine organisms. Understanding the dynamics of the global carbon cycle is fundamental to estimations of atmospheric CO2, and consequently, how Earth's climate may have changed through geologic history.

"Interpreting carbonate and organic carbon isotope covariance in the sedimentary record," was published in the Aug 19 issue of the journal Nature Communications. The study's authors include Oehlert, currently a geologist at BP and Peter Swart, a professor at the UM Rosenstiel School's Department of Marine Geosciences.

.


Related Links
University of Miami Rosenstiel School of Marine and Atmospheric Science
Climate Science News - Modeling, Mitigation Adaptation






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CLIMATE SCIENCE
Rules of thumb for climate change turned upside down
Zurich, Switzerland (SPX) Sep 16, 2014
Based on models and observations, climate scientists have devised a simplified formula to describe one of the consequences of climate change: regions already marked by droughts will continue to dry out in the future climate. Regions that already have a moist climate will experience additional rainfall. In short: dry gets drier; wet gets wetter (DDWW). However, this formula is less universa ... read more


CLIMATE SCIENCE
3D imaging may improve understanding of biofuel plant materials

Ethanol fireplaces: the underestimated risk

ACCESS II Confirms Jet Biofuel Burns Cleaner

Scientists create renewable fossil fuel alternative using bacteria

CLIMATE SCIENCE
Cutting the cord on soft robots

iRobot supplying its PackBots to Canada

Watch MIT's Atlas robot carry heavy objects

DARPA issues RFI for robotic space services for satellites

CLIMATE SCIENCE
Moventas to service two turbines in Eesti Energia's Aulepa wind park

Wind Turbines Outperforming Expectations at Honda Transmission Plant

Stealth wind turbines to become operational in France in 2015

EU calls for study of 2020 renewable energy targets

CLIMATE SCIENCE
150-car pile-up kills two in Netherlands

Tycoon Branson backs ride-sharing service Sidecar

Toshiba Provides Rapid Recharge SCiBT Batteries for Proterra Bus Fleet

Strati 3D-printed electric car unveiled at expo in Chicago

CLIMATE SCIENCE
China bans 'dirty' coal sale, imports

Study sheds new light on why batteries go bad

Scottish scientists make 'tremendously important' breakthrough in water to hydrogen production proce

Mg Box phone battery runs on water, magnesium

CLIMATE SCIENCE
Westinghouse Launches New Outage Control Center

AREVA signs a contract to manufacture a panel prototype for ITER project

Boosting armor for nuclear-waste eating microbes

Iran's current uranium enrichment 'not acceptable': US

CLIMATE SCIENCE
Why China's Insatiable Appetite For Coal Has Likely Peaked

Study urges 15-year plan for low-carbon growth

IRENA: Outdated thinking curbing green energy momentum

Zimbabwe launches $500-mln power units to ease energy woes

CLIMATE SCIENCE
Brazil builds giant tower in Amazon to monitor climate

Climate change could 'fundamentally alter' US forests

Amazon deforestation up 29 pc in 2013 -- Brazil

New NASA Probe Will Study Earth's Forests in 3-D




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.