Subscribe free to our newsletters via your
. Solar Energy News .




WATER WORLD
Global warming may increase methane emissions from freshwater ecosystems
by Staff Writers
Exeter, UK (SPX) Mar 24, 2014


The study collated data from hundreds of laboratory experiments and field surveys to ascertain the speed at which methane fluxes increase with temperature. Image courtesy Professor Ralf Conrad.

New research led by the University of Exeter suggests that rising global temperatures will increase the quantity of the key greenhouse gas methane emitted from freshwater ecosystems to the Earth's atmosphere - which could in turn lead to further warming.

The collaborative study, led by Dr Gabriel Yvon-Durocher from the University of Exeter, collated data from hundreds of laboratory experiments and field surveys to demonstrate that the speed at which methane fluxes increase with temperature was the same whether single species populations of methanogens, microbial communities or whole ecosystems were analyzed.

Dr Yvon-Durocher said: "This is important because biological methane fluxes are a major component of global methane emissions, but there is uncertainty about their magnitude and the factors that regulate them. This hinders our ability to predict the response of this key component of the carbon cycle to global warming. Our research provides scientists with an important clue about the mechanisms that may control the response of methane emissions from ecosystems to global warming."

New research led by the University of Exeter suggests that rising global temperatures will increase the quantity of the key greenhouse gas methane emitted from freshwater ecosystems to the Earth's atmosphere - which could in turn lead to further warming.

The collaborative study, led by Dr Gabriel Yvon-Durocher from the University of Exeter, collated data from hundreds of laboratory experiments and field surveys to demonstrate that the speed at which methane fluxes increase with temperature was the same whether single species populations of methanogens, microbial communities or whole ecosystems were analyzed.

Dr Yvon-Durocher said: "This is important because biological methane fluxes are a major component of global methane emissions, but there is uncertainty about their magnitude and the factors that regulate them. This hinders our ability to predict the response of this key component of the carbon cycle to global warming. Our research provides scientists with an important clue about the mechanisms that may control the response of methane emissions from ecosystems to global warming."

Methane is an important greenhouse gas because it has 25 times the global warming effect of carbon dioxide. The production of methane in freshwater ecosystems is brought about by an ancient group of microorganisms called Archaea that exist in waterlogged sediments where there is no oxygen. They play an important role in the decomposition of biomass, but rather than producing carbon dioxide, they produce methane as a by-product of their metabolism.

The report, published in the leading scientific journal Nature, also showed that the temperature response of methane production is much higher than respiration (production of carbon dioxide) or photosynthesis (consumption of carbon dioxide), indicating that global warming may increase the amount of methane relative to carbon dioxide emitted globally from aquatic ecosystems, terrestrial wetlands and rice paddies.

Dr Yvon-Durocher, from the Environment and Sustainability Institute at the University of Exeter's Penryn Campus in Cornwall, added: "The discovery that methane fluxes are much more responsive to temperature than the processes that produce and consume carbon dioxide highlights another mechanism by which the global carbon cycle may serve to accelerate rather than mitigate future climate change.

"However more research, using our results as a platform for refining Earth system models, is required to explore the consequences of our findings for future levels of climate change."

'Methane fluxes show consistent temperature dependence across microbial to ecosystem scales' by Gabriel Yvon-Durocher, Andrew P. Allen, David Bastviken, Ralf Conrad, Cristian Gudasz, Annick St-Pierre, Nguyen Thanh-Duc and Paul A. del Giorgio is published in the latest edition of Nature. DOI:10.1038/nature13164

.


Related Links
University of Exeter
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
High-tech materials purify water with sunlight
Dallas TX (SPX) Mar 21, 2014
Sunlight plus a common titanium pigment might be the secret recipe for ridding pharmaceuticals, pesticides and other potentially harmful pollutants from drinking water. Scientists combined several high-tech components to make an easy-to-use water purifier that could work with the world's most basic form of energy, sunlight, in a boon for water purification in rural areas or developing countries. ... read more


WATER WORLD
Algae may be a potential source of biofuels and biochemicals even in cool climate

Renewable chemical ready for biofuels scale-up

Maverick and PPE To Make Small-scale Methane-to-Methanol Plants

Boeing, South African Airways Explore Ways for Farmers to Grow More Sustainable Biofuel Crops

WATER WORLD
As Age-Friendly Technologies Emerge, Experts Recommend Policy Changes

The DARPA Grand Challenge: Ten Years Later

Soft robotic fish moves like the real thing

Researchers Achieve Breakthrough in Robotics for Space Exploration

WATER WORLD
Australian wind energy industry growing up

Wind farms can provide society a surplus of reliable clean energy

A new algorithm improves the efficiency of small wind turbines

Wind farms can provide society a surplus of reliable clean energy, Stanford study finds

WATER WORLD
Volvo Cars returns to profit on China sales, cost cuts

Polluted Paris forces half cars off the road

Gold-plated car shines at Geneva Motor Show

Is the time right for new energy vehicles

WATER WORLD
Birth of a New Ukrainian Nation?

Bitterness over Exxon Valdez lingers, 25 years on

Box-shaped pressure vessel for LNG developed by KAIST research team

Sorption energy storage and conversion for cooling and heating

WATER WORLD
Shale could be long-term home for problematic nuclear waste

AREVA and Novinium to Provide Cable Rejuvenation Services to the Nuclear Industry

Greenpeace stages audacious protest at France's oldest nuclear plant

UN nuclear watchdog chief says atomic plants never '100%' safe

WATER WORLD
BTM Reduces Coolant Usage and Waste Removal Costs with QualiChem Fluids

ICLEI Launches "Climate Pathways" to Help Cities Fight Carbon Pollution

Lessons offered by emerging carbon trading markets

Cutting Victorian energy efficiency scheme would hit vulnerable households and jobs

WATER WORLD
In the genome of loblolly pine lies hope for better resistance to a damaging disease

Amazon Inhales More Carbon than It Emits

Indonesian president intervenes in roaring forest blaze

Light pollution impairs rainforest regeneration




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.