Solar Energy News  
NANO TECH
Gold nanoantennas help in creation of more powerful nanoelectronics
by Staff Writers
Tomsk, Russia (SPX) Nov 03, 2017


A schematic of the experiment.

Scientists from Tomsk Polytechnic University and their colleagues from Germany have conducted an experiment which demonstrated the behavior of areas of two-dimensional materials which are applied in advanced electronics. It comes to devices that are in the research stage and will be used for the creation of flexible displays for smartphones and other gadgets, flexible optical and computing schemes, flexible solar cells and so on.

According to the authors of the study, these are the experiments that have not been conducted before. The scientists are working on a technology which allows us to see how materials interact at the nanoscale, to determine local strain occurring at their interaction and even to see defects of the materials at the nanoscale that will make it possible to improve the components of nanoelectronics.

"Now in the field of electronics and digital technology there is a trend to miniaturize the devices. This trend is most relevant for transistors," - says Prof. Raul Rodrigez from the Department of Lasers and Lighting Technology. - "Nowadays there are modern technologies which enable the creation of transistors with a channel width of 12 to 14 nanometers, thus placing more transistors in the processor, increasing the productivity of smartphones and other miniature electronic devices. To further improve these technologies and create transistors of even smaller sizes, we should understand how the semiconductor material behaves when interacting with metals and how its properties change at the nanoscale."

Earlier, according to the scientists, component materials of modern electronics were studied only at the macro- and micro-scale, but data obtained was not always sufficient to understand the interaction of materials with each other. In the published paper the scientists from TPU and Chemnitz Technological University and the University of Regensburg (Germany) demonstrated for the first time how component materials of advanced nanoelectronics behave at the nanoscale.

"For the creation of the complete line of different devices used in nanoelectronics, in particular flexible ones, various classes of two-dimensional materials are required, including semiconductors. Molybdenum disulfide is one of the most famous semi-conductors. Our goal was to study strain occurring in this material at the nanoscale, as well as the processes of its stretching or compressing in different structures and fields," - says the authors of the research paper.

The scientists used gold nanoparticles, i.e. nanotriangles. Two monolayers of molybdenum disulphide were placed on top of them, which was transformed due the convex shape of the nanotriangles, what caused local strain 1.4%.

"The strain is more than we initially expected to see. In general, we had no goal to create the highest possible strain, but it's interesting that simply putting thin layers of molybdenum disulfide on metal we may obtain such significant deformations. This is very important to understand what happens when a semiconductor (molybdenum disulfide) contacts a conductor (gold) if we want to create a nanodevice," notes Prof. Rodrigez.

"In our work we shown that we can't neglect the interaction between a thin film and a substrate in electron nanodevices. When these materials are studied, all their properties are investigated on a flat substrate. However, a metal used in electrodes may change the properties of the material. This is inevitable, but perhaps it can be used in a way."

Raul Rodrigez specifies that the published article was the first one describing such local measurements of strain.

The experiment was a success due to a unique technology Tip-Enhanced Raman Spectroscopy (TERS) combining methods of optical spectroscopy and atomic force microscopy. The main element of the technology is a gold nano-antenna embedded in the atomic-force microscope. It size varies from microns at the base to nanometers at the tip. A nanoparticle is placed on the tip of the antenna and scientists study only signals received from this nanoparticle.

The scientists emphasize that the TERS method is applicable both for studying local strain and interaction processes of particles and detecting defects in certain materials at the nanoscale.

The study outcome was published in NanoLetters.

Research paper

NANO TECH
Researchers show how nanoscale patterning can decrease metal fatigue
Providence RI (SPX) Nov 02, 2017
A new study in the journal Nature shows how metals can be patterned at the nanoscale to be more resistant to fatigue, the slow accumulation of internal damage from repetitive strain. The research focused on metal manufactured with nanotwins, tiny linear boundaries in a metal's atomic lattice that have identical crystalline structures on either side. The study showed that nantowins help to ... read more

Related Links
Tomsk Polytechnic University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
Research aims to help renewable jet fuel take flight

Expanding Brazilian sugarcane could dent global CO2 emissions

Stiff fibers spun from slime

Converting carbon dioxide to carbon monoxide using water, electricity

NANO TECH
Researchers unveil tool to debug 'black box' deep learning algorithms

Physics boosts artificial intelligence methods

Liquid metal brings soft robotics a step closer

Intel working with Facebook on chips for AI

NANO TECH
New York sets high bar for wind energy

Construction to begin on $160 million Industry Leading Hybrid Renewable Energy Project

A kite that might fly

Scotland outreach to Canada yields wind energy investment

NANO TECH
Tesla slides on murky outlook for fixing Model 3 production woes

Investors fuel a multibillion-dollar ride-sharing frenzy

Energy firms back investment into diesel engine

'Dieselgate' costs choke Volkswagen profits

NANO TECH
New studies on disordered cathodes may provide much-needed jolt to lithium batteries

UNIST unveils new fast-charging, high-energy electric-car battery technology

Microscopic defects make batteries better

New research findings could lead to safer and more powerful lithium-ion batteries

NANO TECH
Rutgers-led research could revolutionize nuclear waste reprocessing and save money

South Korea to push ahead with nuclear power plants

AREVA NP awarded contract for safety upgrades in seven reactors

AREVA NP installs a system allowing flexible electricity generation at Goesgen nuclear power plant

NANO TECH
Japan faces challenges in cutting CO2, Moody's finds

IEA: An electrified world would cost $31B per year to achieve

'Fuel-secure' steps in Washington counterintuitive, green group says

SLAC-led project will use AI to prevent or minimize electric grid failures

NANO TECH
Peat bogs defy the laws of biodiversity

Amazonian hunters deplete wildlife but don't empty forests

Indigenous groups warn Paris accord imperiled by deforestation

Forest fires contributed to record global tree cover loss









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.