Solar Energy News  
SOLAR DAILY
Graphene as a front contact for silicon-perovskite tandem solar cells
by Staff Writers
Berlin, Germany (SPX) Oct 06, 2015


The perovskite film (black, 200-300 nm) is covered by Spiro.OMeTAD, Graphene with gold contact at one edge, a glass substrate and an amorphous/crystalline silicon solar cell. Image courtesy F. Lang and HZB. For a larger version of this image please go here.

Teams at HZB have already acquired extensive experience with these kinds of tandem cells. A particularly effective complement to conventional silicon is the hybrid material called perovskite. It has a band gap of 1.6 electron volts with organic as well as inorganic components.

However, it is very difficult to provide the perovskite layer with a transparent front contact. While sputter deposition of indium tin oxide (ITO) is common practice for inorganic silicon solar cells, this technique destroys the organic components of a perovskite cell.

Now a group headed by Prof. Norbert Nickel has introduced a new solution. Dr. Marc Gluba and PhD student Felix Lang have developed a process to cover the perovskite layer evenly with graphene. Graphene consists of carbon atoms that have arranged themselves into a two-dimensional honeycomb lattice forming an extremely thin film that is highly conductive and highly transparent.

As a first step, the scientists promote growth of the graphene onto copper foil from a methane atmosphere at about 1000 degrees Celsius. For the subsequent steps, they stabilise the fragile layer with a polymer that protects the graphene from cracking. In the following step, Felix Lang etches away the copper foil.

This enables him to transfer the protected graphene film onto the perovskite. "This is normally carried out in water. The graphene film floats on the surface and is fished out by the solar cell, so to speak. However, in this case this technique does not work, because the performance of the perovskite degrades with moisture. Therefore we had to find another liquid that does not attack perovskite, yet is as similar to water as possible", explains Gluba.

Subsequent measurements showed that the graphene layer is an ideal front contact in several respects. Thanks to its high transparency, none of the sunlight's energy is lost in this layer. But the main advantage is that there are no open-circuit voltage losses, that are commonly observed for sputtered ITO layers.

This increases the overall conversion efficiency. "This solution is comparatively simple and inexpensive to implement", says Nickel. "For the first time, we have succeeded in implementing graphene in a perovskite solar cell. This enabled us to build a high-efficiency tandem device."

Journal of Physical Chemistry Letters: Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells; Felix Lang, Marc A. Gluba, Steve Albrecht, Jo?rg Rappich, Lars Korte, Bernd Rech, and Norbert H. Nickel; J. Phys. Chem. Lett., 2015, 6 (14), pp 2745-2750 DOI: 10.1021/acs.jpclett.5b0117


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Helmholtz-Zentrum Berlin fur Materialien und Energie
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SOLAR DAILY
Africa could quadruple green energy production by 2030: report
Paris (AFP) Oct 5, 2015
Renewable energy sources could supply nearly a quarter of Africa's power needs by 2030, more than four times the current levels, according to a report published Monday by the International Renewable Energy Agency (IRENA). In 2013 renewables accounted for five percent of the continent's needs but this figure could reach 22 percent over the next 15 years, IRENA said in its "Africa 2030" report ... read more


SOLAR DAILY
Barley straw shows potential as transport biofuel raw material

Green biomass entails potential as well as challenges

Bravo to biomass

Protein conjugation method offers new possibilities for biomaterials

SOLAR DAILY
U.S. Navy orders new robots, servicing

Embedded optical sensors could make robotic hands more dexterous

MIT's egg-clutching robot has soft but steady hands

Aussie woman sends 'robot' to queue for new iPhone

SOLAR DAILY
US has fallen behind in offshore wind power

Moventas rolls out breakthrough up-tower planetary repairs for GE fleet

Chinese firm invests in Mexican wind power projects

German wind power output topping 2014 total

SOLAR DAILY
ORNL demonstrates road to supercapacitors for scrap tires

Deer-vehicle collisions increase during breeding season

Oslo moves to ban cars from city centre

VW revs up recall plan, hunts for culprits in pollution scam

SOLAR DAILY
A micro-supercapacitor with unmatched energy storage performance

Nobel laureate hopes work could pave way to fusion power

Making batteries with portabella mushrooms

U.S. coal sector in downturn

SOLAR DAILY
International research team finds thriving wildlife populations in Chernobyl

TEPCO Removes Protective Cover Over Crippled Fukushima Reactor

EDF says ball in China's court on UK nuclear plant: FT

Nuclear power plants warned on cyber security

SOLAR DAILY
Leaders call for carbon pricing worldwide

ADB supports Indonesian energy diversity

US cities ranked on impact of urban heat islands on temps

Brazil's Rousseff pledges 37% cut in greenhouse gas emissions

SOLAR DAILY
Large trees - key climate influencers - die first in drought

NASA/USGS Mission Helps Answer: What Is a Forest

Tourists replace rebels as Sri Lanka national park blooms

Deep in Estonia's woods, Mother Nature gets a megaphone









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.