Subscribe free to our newsletters via your
. Solar Energy News .




CARBON WORLDS
Graphene-based sensor that is tunable and highly sensitive
by Staff Writers
Lausanne, Switzerland (SPX) Jul 10, 2015


Making graphene's electrons oscillate in different ways makes it possible to "read" all the vibrations of the molecule on its surface. Image courtesy Science / EPFL / Miguel Spuch / Daniel Rodrigo. For a larger version of this image please go here.

Many areas of fundamental research are interested in graphene owing to its exceptional characteristics. It is made of one layer of carbon atoms, which makes it light and sturdy, and it is an excellent thermal and electrical conductor. Despite its apparently limitless potential, however, few applications have been demonstrated to date.

Scientists at EPFL's Bionanophotonic Systems Laboratory (BIOS) together with researchers from the Institute of Photonic Sciences (ICFO, Spain) have now added another one. They have harnessed graphene's unique optical and electronic properties to develop a reconfigurable highly sensitive molecule sensor. The results are described in an article appearing in the latest edition of the journal Science.

Focussing light to improve sensing
The researchers used graphene to improve on a well-known molecule-detection method: infrared absorption spectroscopy. In the standard method, light is used to excite the molecules, which vibrate differently depending on their nature.

It can be compared to a guitar string, which makes different sounds depending on its length. By virtue of this vibration, the molecules reveal their presence and even their identity. This "signature" can be "read" in the reflected light.

This method is not effective, however, in detecting nanometrically-sized molecules. The wavelength of the infrared photon directed at a molecule is around 6 microns (6,000 nanometres - 0.006 millimeters), while the target measures only a few nanometres (about 0.000001 mm). It is very challenging to detect the vibration of such a small molecule in reflected light.

There is where graphene comes in. If given the correct geometry, the graphene is able to focus the light on a precise spot on its surface and "hear" the vibration of a nanometric molecule that is attached to it. "We first pattern nanostructures on the graphene surface by bombarding it with electron beams and etching it with oxygen ions," said Daniel Rodrigo, co-author of the publication.

"When the light arrives, the electrons in graphene nanostructures begin to oscillate. This phenomenon, known as 'localized surface plasmon resonance,' serves to concentrate light into tiny spots, which are comparable with the dimensions of the target molecules. It is then possible to detect nanometric structures."

Reconfiguring graphene in real time to see the molecule's structure
There is more to it. In addition to identifying the presence of nanometric molecules, this process can also reveal the nature of the bonds connecting the atoms that the molecule is composed of.

When a molecule vibrates, it does not give off only one type of "sound." It produces a whole range of vibrations, which are generated by the bonds connecting the different atoms. Returning to the example of the guitar: each string vibrates differently and together they form one musical instrument.

These nuances provide information on the nature of each bond and on the health of the entire molecule. "These vibrations act as a fingerprint that allow us to identify the molecule; such as proteins, and can even tell their health status" said Odeta Limaj, another co-author of the publication.

In order to pick up the sound given off by each of the strings, it has to be possible to identify a whole range of frequencies. And that is something graphene can do. The researchers "tuned" the graphene to different frequencies by applying voltage, which is not possible with current sensors. Making graphene's electrons oscillate in different ways makes it possible to "read" all the vibrations of the molecule on its surface.

"We tested this method on proteins that we attached to the graphene. It gave us a full picture of the molecule," said Hatice Altug.

A big step closer to using graphene for molecule sensing
The new graphene-based process represents a major step forward for the researchers, for several reasons. First, this simple method shows that it is possible to conduct a complex analysis using only one device, while it normally requires many different ones. And all this without stressing or modifying the biological sample. Second, it shows graphene's incredible potential in the area of detection.

"There are many possible applications," said Altug. "We focussed on biomolecules, but the method should also work for polymers, and many other substances," she added.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Ecole Polytechnique Federale de Lausanne
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
Towards graphene biosensors
Berlin, Germany (SPX) Jun 28, 2015
Pure carbon occurs in many forms. Besides the classical configurations found in diamonds, graphite, and coal, there are other younger exotic cousins such as graphene. Its structure resembles a honeycomb - a hexagonal mesh with a carbon atom at every corner - that is only a single atomic layer thick. Hence, it is essentially two-dimensional. As a result, graphene is extremely conductive, complete ... read more


CARBON WORLDS
Tropical peatland carbon losses from oil palm plantations may be underestimated

How do biofuel perennials affect the water cycle?

Scientists study ways to integrate biofuels and food crops on farms

Biogas to biomethane by water absorption column at low pressure and temps

CARBON WORLDS
3-D-printed robot is hard at heart, soft on the outside

Hopping towards a better soft robot

Pinterest CEO sees site's future in its 'catalog of ideas'

Robots under test for oil and gas rig duty

CARBON WORLDS
Can you actually hear 'inaudible' sound?

Con Edison Development Continues to Build Its Wind Power Portfolio

Green shoots for Aussie renewables as Ararat Wind Farm moves ahead

Viaducts with wind turbines, the new renewable energy source

CARBON WORLDS
In Mexico City, once beloved 'Beetle' car nearly extinct

China's Uber-style taxi app raises $2 bn

A learning method for energy optimization of the plug-in hybrid electric bus

Physical study may give boost to hydrogen cars

CARBON WORLDS
Superconductor could be realized in a broken Lorenz invariant theory

Tunneling out of the surface

Distributed technique for power 'scheduling' advances smart grid concept

Single-catalyst water splitter produces clean-burning hydrogen 24/7

CARBON WORLDS
Russia Will Start Selling Enriched Uranium to Europe

Neutrons find 'missing' magnetism of plutonium

Putin, Zuma consider development of South African nuclear energy priority

Japan reactor refuelled for restart, despite opposition

CARBON WORLDS
Climate: EU parliament backs reform of carbon market

Scientists issue carbon price call to curb climate change

Fossil fuels, low-carbon plans, in tug-of-war

New formula expected to spur advances in clean energy generation

CARBON WORLDS
Kidnappers free 12 loggers in Senegal's Casamance: army

Timber and construction, a well-matched couple

Rumors of southern pine deaths have been exaggerated

Can pollution help trees fight infection?




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.