Subscribe free to our newsletters via your
. Solar Energy News .




CARBON WORLDS
Graphene gets competition
by Staff Writers
Munich, Germany (SPX) Jul 10, 2015


Crystals of black arsenic phosphorus -- exchanging phsphorus against arsenic, the band gap can be tuned to as low as 0.15 eV, making the material predestined for long wavelength infrared sensors. Image courtesy Andreas Battenberg and TUM. For a larger version of this image please go here.

Graphene, the only one atom thick carbon network, achieved overnight fame with the 2010 Nobel Prize. But now comes competition: Such layers can also be formed by black phosphorous. Chemists at the Technische Universitat Munchen (TUM) have now developed a semiconducting material in which individual phosphorus atoms are replaced by arsenic.

In a collaborative international effort, American colleagues have built the first field-effect transistors from the new material.

For many decades silicon has formed the basis of modern electronics. To date silicon technology could provide ever tinier transistors for smaller and smaller devices. But the size of silicon transistors is reaching its physical limit.

Also, consumers would like to have flexible devices, devices that can be incorporated into clothing and the likes. However, silicon is hard and brittle. All this has triggered a race for new materials that might one day replace silicon.

Black arsenic phosphorus might be such a material. Like graphene, which consists of a single layer of carbon atoms, it forms extremely thin layers. The array of possible applications ranges from transistors and sensors to mechanically flexible semiconductor devices. Unlike graphene, whose electronic properties are similar to those of metals, black arsenic phosphorus behaves like a semiconductor.

Phosphorene vs. graphene
A cooperation between the Technical University of Munich and the University of Regensburg on the German side and the University of Southern California (USC) and Yale University in the United States has now, for the first time, produced a field effect transistor made of black arsenic phosphorus.

The compounds were synthesized by Marianne Koepf at the laboratory of the research group for Synthesis and Characterization of Innovative Materials at the TUM. The field effect transistors were built and characterized by a group headed by Professor Zhou and Dr. Liu at the Department of Electrical Engineering at USC.

The new technology developed at TUM allows the synthesis of black arsenic phosphorus without high pressure. This requires less energy and is cheaper. The gap between valence and conduction bands can be precisely controlled by adjusting the arsenic concentration.

"This allows us to produce materials with previously unattainable electronic and optical properties in an energy window that was hitherto inaccessible," says Professor Tom Nilges, head of the research group for Synthesis and Characterization of Innovative Materials.

Detectors for infrared
With an arsenic concentration of 83 percent the material exhibits an extremely small band gap of only 0.15 electron volts, making it predestined for sensors which can detect long wavelength infrared radiation.

LiDAR (Light Detection and Ranging) sensors operate in this wavelength range, for example. They are used, among other things, as distance sensors in automobiles. Another application is the measurement of dust particles and trace gases in environmental monitoring.

A further interesting aspect of these new, two-dimensional semiconductors is their anisotropic electronic and optical behavior. The material exhibits different characteristics along the x- and y-axes in the same plane. To produce graphene like films the material can be peeled off in ultra thin layers. The thinnest films obtained so far are only two atomic layers thick.

Black Arsenic-Phosphorus: Layered Anisotropic Infrared Semiconductors with Highly Tunable Compositions and Properties; Bilu Liu, Marianne Kopf, Ahmad N. Abbas, Xiaomu Wang, Qiushi Guo, Yichen Jia, Fengnian Xia, Richard Weihrich, Frederik Bachhuber, Florian Pielnhofer, Han Wang, Rohan; Dhall, Stephen B. Cronin, Mingyuan Ge, Xin Fang, Tom Nilges, Chongwu Zhou; Adv. Mater., 2015, Early View - DOI: 10.1002/adma.201501758


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Technical University of Munich (TUM)
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
Graphene-based sensor that is tunable and highly sensitive
Lausanne, Switzerland (SPX) Jul 10, 2015
Many areas of fundamental research are interested in graphene owing to its exceptional characteristics. It is made of one layer of carbon atoms, which makes it light and sturdy, and it is an excellent thermal and electrical conductor. Despite its apparently limitless potential, however, few applications have been demonstrated to date. Scientists at EPFL's Bionanophotonic Systems Laboratory ... read more


CARBON WORLDS
Tropical peatland carbon losses from oil palm plantations may be underestimated

How do biofuel perennials affect the water cycle?

Scientists study ways to integrate biofuels and food crops on farms

Biogas to biomethane by water absorption column at low pressure and temps

CARBON WORLDS
3-D-printed robot is hard at heart, soft on the outside

Hopping towards a better soft robot

Pinterest CEO sees site's future in its 'catalog of ideas'

Robots under test for oil and gas rig duty

CARBON WORLDS
Can you actually hear 'inaudible' sound?

Con Edison Development Continues to Build Its Wind Power Portfolio

Green shoots for Aussie renewables as Ararat Wind Farm moves ahead

Viaducts with wind turbines, the new renewable energy source

CARBON WORLDS
In Mexico City, once beloved 'Beetle' car nearly extinct

China's Uber-style taxi app raises $2 bn

A learning method for energy optimization of the plug-in hybrid electric bus

Physical study may give boost to hydrogen cars

CARBON WORLDS
Superconductor could be realized in a broken Lorenz invariant theory

Tunneling out of the surface

Distributed technique for power 'scheduling' advances smart grid concept

Single-catalyst water splitter produces clean-burning hydrogen 24/7

CARBON WORLDS
Russia Will Start Selling Enriched Uranium to Europe

Neutrons find 'missing' magnetism of plutonium

Putin, Zuma consider development of South African nuclear energy priority

Japan reactor refuelled for restart, despite opposition

CARBON WORLDS
Climate: EU parliament backs reform of carbon market

Scientists issue carbon price call to curb climate change

Fossil fuels, low-carbon plans, in tug-of-war

New formula expected to spur advances in clean energy generation

CARBON WORLDS
Kidnappers free 12 loggers in Senegal's Casamance: army

Timber and construction, a well-matched couple

Rumors of southern pine deaths have been exaggerated

Can pollution help trees fight infection?




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.