Solar Energy News  
CARBON WORLDS
Graphene helps protect photocathodes for physics experiments
by Staff Writers
Argonne, IL (SPX) Sep 27, 2018

file illustration only

Transforming light into electricity is no mean feat. Some devices, like solar cells, use a closed circuit to generate an electric current from incoming light. But another class of materials, called photocathodes, generate large quantities of free electrons that can be used for state-of-the-art science.

Photocathodes have one significant limitation, which is that they degrade when exposed to air. To prevent this, scientists at the U.S. Department of Energy's (DOE) Argonne, Brookhaven, and Los Alamos national laboratories have developed a way to wrap photocathodes up in a protective coat of atomically thin graphene, extending their lifetimes.

"The thin layer [of graphene] we use provides insulation from air without hampering charge mobility or quantum efficiency." - Junqi Xie, Argonne physicist

Photocathodes work by converting photons of light into electrons through a process known as the photoelectric effect - which essentially involves the ejection of electrons from the surface of a material hit with light of a sufficient frequency. The large quantities of electrons generated by photocathodes can be used in accelerator systems that produce intense electron beams, or in photodetector systems for high-energy physics experiments that operate in low-light environments in which every photon counts.

The relative success of a photocathode material hinges on two distinct qualities: its quantum efficiency and its longevity. "Quantum efficiency refers to the ratio of emitted electrons to incoming photons," said Argonne physicist Junqi Xie.

The higher the quantum efficiency of a given material, the more electrons it can generate.

In the study, Xie and his colleagues looked at a material called potassium cesium antimonide, which has one of the highest quantum efficiencies of any known photocathode in the visible range of the spectrum. But even though the quantum efficiency of the material is high, potassium cesium antimonide photocathodes are susceptible to breaking down when exposed to even very small amounts of air.

According to Xie, there are two ways of making sure the photocathode doesn't interact with air. The first is to operate it in a vacuum, which isn't always feasible. The second is to encapsulate the photocathode with a thin film of material.

To successfully insulate a photocathode, the researchers needed to identify a material that could form layers only a few atoms thick and that was electrically conductive. Graphene, a two-dimensional material made of carbon, satisfied both of these requirements.

"For graphene, you can just use two or three atomic layers; plus, it's optically transparent and has high charge mobility," Xie said. "The thin layer we use provides insulation from air without hampering charge mobility or quantum efficiency."

Proving that a photocathode material can last longer without suffering from quantum efficiency losses represents the key challenge in developing the next generation of these materials, Xie said. "The photocathode itself is pretty good - it's a state-of-the-art photocathode with high quantum efficiency. Using graphene helps alleviate concern about the lifetime," he explained.

The graphene-wrapping technique used in this study could in principle be employed in any photocathode whose performance suffers when exposed to air. It is especially important for a proposed new generation of photocathodes based on a class of materials called halide perovskites. These materials could offer even higher quantum efficiencies than potassium cesium antimonide, but face similar challenges when it comes to lifetime.

Research Report: "Free-standing bialkali photocathodes using atomically thin substrates"


Related Links
Argonne National Laboratory
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CARBON WORLDS
A key to climate stabilization could be buried deep in the mud
Tallahassee FL (SPX) Sep 25, 2018
Earth's peatland soils store a lot of carbon - about as much as currently flows freely through the atmosphere as carbon dioxide. As global temperatures rise, scientists worry that the planet's grip on these carbon reservoirs could weaken, unleashing a "carbon bomb" that could further destabilize Earth's climate systems. But a new study led by Florida State University offers some hope that Earth's carbon reservoirs might not be quite as vulnerable as experts predict. In a global survey of peatlands ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Photosynthesis discovery could help next-gen biotechnologies

Climate researchers: More green space, less biofuel

How a molecular signal helps plant cells decide when to make oil

Ready-to-use recipe for turning plant waste into gasoline

CARBON WORLDS
Amazon aims to make Alexa assistant bigger part of users' lives

Machine-learning system tackles speech and object recognition, all at once

Spray coated tactile sensor on a 3D surface for robotic skin

'Robotic skins' turn everyday objects into robots

CARBON WORLDS
Wind Power: It is all about the distribution

Big wind, solar farms could boost rain in Sahara

DNV GL supports creation of China's first HVDC offshore wind substation

China pushes wind energy efforts further offshore

CARBON WORLDS
Late to the party, German carmakers join race against Tesla

Decision looms for Berlin on diesel refits

US regulators charge Tesla CEO Elon Musk with fraud

Uber to pay $148 mn over data breach it concealed

CARBON WORLDS
What powers deep space travel

A novel approach of improving battery performance

X-rays uncover a hidden property that leads to failure in a lithium-ion battery material

New battery gobbles up carbon dioxide

CARBON WORLDS
Framatome wins I and C modernization contract for EDF's 900 MW reactors

First fuel cladding tubes delivered for "Hualong-1" nuclear power plant

Framatome to deliver ATRIUM 11 fuel to Talen Energy's Susquehanna Station

Engie denies plans to sell Belgian nuclear plants

CARBON WORLDS
How will climate change stress the power grid

Electricity crisis leaves Iraqis gasping for cool air

Energy-intensive Bitcoin transactions pose a growing environmental threat

Germany thwarts China by taking stake in 50Hertz power firm

CARBON WORLDS
Gabon pressures forestry firms on best practice

How leaves talk to roots

Chile launches immense scenic route connecting 17 national parks

National parks bear the brunt of climate change









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.