Solar Energy News  
PHYSICS NEWS
Gravitational waves leave a detectable mark, physicists say
by Staff Writers
Ithaca NY (SPX) May 10, 2019

illustration only

Gravitational waves, first detected in 2016, offer a new window on the universe, with the potential to tell us about everything from the time following the Big Bang to more recent events in galaxy centers.

And while the billion-dollar Laser Interferometer Gravitational-Wave Observatory (LIGO) detector watches 24/7 for gravitational waves to pass through the Earth, new research shows those waves leave behind plenty of "memories" that could help detect them even after they've passed.

"That gravitational waves can leave permanent changes to a detector after the gravitational waves have passed is one of the rather unusual predictions of general relativity," said doctoral candidate Alexander Grant, lead author of "Persistent Gravitational Wave Observables: General Framework," published April 26 in Physical Review D.

Physicists have long known that gravitational waves leave a memory on the particles along their path, and have identified five such memories. Researchers have now found three more aftereffects of the passing of a gravitational wave, "persistent gravitational wave observables" that could someday help identify waves passing through the universe.

Each new observable, Grant said, provides different ways of confirming the theory of general relativity and offers insight into the intrinsic properties of gravitational waves.

Those properties, the researchers said, could help extract information from the Cosmic Microwave Background - the radiation left over from the Big Bang.

"We didn't anticipate the richness and diversity of what could be observed," said Eanna Flanagan, the Edward L. Nichols Professor and chair of physics and professor of astronomy.

"What was surprising for me about this research is how different ideas were sometimes unexpectedly related," said Grant. "We considered a large variety of different observables, and found that often to know about one, you needed to have an understanding of the other."

The researchers identified three observables that show the effects of gravitational waves in a flat region in spacetime that experiences a burst of gravitational waves, after which it returns again to being a flat region. The first observable, "curve deviation," is how much two accelerating observers separate from one another, compared to how observers with the same accelerations would separate from one another in a flat space undisturbed by a gravitational wave.

The second observable, "holonomy," is obtained by transporting information about the linear and angular momentum of a particle along two different curves through the gravitational waves, and comparing the two different results.

The third looks at how gravitational waves affect the relative displacement of two particles when one of the particles has an intrinsic spin.

Each of these observables is defined by the researchers in a way that could be measured by a detector. The detection procedures for curve deviation and the spinning particles are "relatively straightforward to perform," wrote the researchers, requiring only "a means of measuring separation and for the observers to keep track of their respective accelerations."

Detecting the holonomy observable would be more difficult, they wrote, "requiring two observers to measure the local curvature of spacetime (potentially by carrying around small gravitational wave detectors themselves)." Given the size needed for LIGO to detect even one gravitational wave, the ability to detect holonomy observables is beyond the reach of current science, researchers say.

"But we've seen a lot of exciting things already with gravitational waves, and we will see a lot more. There are even plans to put a gravitational wave detector in space that would be sensitive to different sources than LIGO," Flanagan said.

Research paper


Related Links
Cornell University
The Physics of Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


PHYSICS NEWS
LIGO and Virgo Detect Neutron Star Smash-Ups
Pasadena CA (SPX) May 03, 2019
On April 25, 2019, the National Science Foundation's Laser Interferometer Gravitational-Wave Observatory (LIGO) and the European-based Virgo detector registered gravitational waves from what appears likely to be a crash between two neutron stars - the dense remnants of massive stars that previously exploded. One day later, on April 26, the LIGO-Virgo network spotted another candidate source with a potentially interesting twist: it may in fact have resulted from the collision of a neutron star and black ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

PHYSICS NEWS
Researchers develop viable, environmentally friendly alternative to Styrofoam

Methane-consuming bacteria could be the future of fuel

The secrets of secretion: isolating eucalyptus genes for oils, biofuel

Industry-ready process makes plastics chemical from plant sugars

PHYSICS NEWS
Beyond the Metal: Investigating Soft Robots at NASA Langley

DIH-HERO - a medical robotics network

Training AI to win a dogfight

SIS advances smart multi-robot autonomy

PHYSICS NEWS
UK hits historic coal-free landmark

BayWa r.e. sells its first Australian wind farms to Epic Energy

The complicated future of offshore wind power in the US

SeaPlanner to support marine coordination for Taiwan's Formosa I Offshore Wind Farm

PHYSICS NEWS
Rideshare drivers strike as Uber poised to go public

Uber stock set to launch at $45 a share

In milestone, Uber makes Wall Street debut

GM autonomous unit Cruise valued at $19 billion in funding round

PHYSICS NEWS
New class of catalysts for energy conversion

Army discovery opens path to safer batteries

New crystalline material boasts electronic properties never before seen

Manipulating superconductivity using a 'mechanic' and an 'electrician'

PHYSICS NEWS
Three Mile Island nuclear plant to close by September 30

Experimental device generates electricity from the coldness of the universe

Public dread of nuclear power limits its use

Framatome works with Exelon Generation to install Enhanced Accident Tolerant Fuel assemblies

PHYSICS NEWS
Adding satnav to turn power grids into smart systems

Siemens inches forward in race to revamp Iraq's grid

US charges Chinese engineer with stealing GE technology

New York mayor targets classic skyscrapers with Green New Deal

PHYSICS NEWS
Researchers document the oldest known trees in eastern North America

Climate change is giving old trees a growth spurt

Illegal haul of Gabonese sacred wood disappears

Attacks on Brazil's ecological paradises threaten biodiversity









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.