Subscribe free to our newsletters via your
. Solar Energy News .




CLIMATE SCIENCE
Greater desertification control using sand trap simulations
by Staff Writers
Heidelberg, Germany (SPX) Sep 30, 2013


File image.

In the fight against desertification, so-called straw checkerboard barriers (SCB) play a significant role. SCB consists of half -exposed criss-crossing rows of straws of wheat, rice, reeds, and other plants. The trouble is that our understanding of the laws governing wind-sand movement in SCB and their surrounding area is insufficient.

Now, Ning Huang and colleagues from Lanzhou University in China have performed a numerical simulation of the sand movement inside the SCB, described in a paper just published in EPJ E. China is particularly affected by desertification, which affects 18 percent of its territory.

The results will help us to understand sand fixation mechanisms that are relevant for sandstorm and land-desertification control.

The authors relied on a simulation of large eddies, which are circulations around an obstruction such as the SCB walls, to study the turbulence stress. They also used a discrete particle-tracing method to numerically simulate the wind -sand movement inside the SCB.

Specifically, they described the sand as a gas, using equations to describe their space-averaged hydrodynamics.

They also analysed in detail the movement characteristics of sand particles, the transverse velocities of sand particles and wind-sand flow within the SCB using a model taking into consideration the coupling effects of wind field and sand particles.

Huang and colleagues found that the SCB contributed to a decrease in the sand transport rate in its interior, thus helping the sand fixation. What is more, as the transverse distance increases, the strength of wind-sand flow eddies decreases.

Meanwhile, the sand accumulates near the interior walls of the SCB. Finally, as the number of SCBs increases, the wind is less able to transport sand.

Future studies will be designed to optimise SCB design, based on the authors' theoretical analysis. These findings could also be used to study the evolution to sand dunes.

N. Huang, X. Xia, D. Tong (2013), Numerical Simulation of Wind-sand Movement in Straw Checkerboard Barriers, European Physical Journal E,DOI 10.1140/epje/i2013-13099-6

.


Related Links
Springer
Climate Science News - Modeling, Mitigation Adaptation






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CLIMATE SCIENCE
'Star Wars' desert set to be overtaken by sand dunes
Tunis, Tunisia (UPI) Jul 20, 2013
Sand dunes in the Tunisian desert are encroaching on the Hollywood set built to film scenes in the "Star Wars" movies, scientists said. The massive wind-blown, crescent-shaped sand dunes, or barchans, move at a rate of about 50 feet per year. The structures built to film the movie have proved useful to scientists studying sand dune movements, since virtually no permanent structur ... read more


CLIMATE SCIENCE
First look at complete sorghum genome may usher in new uses for food and fuel

First steps towards achieving better and cheaper biodiesel

Want wine with those biofuels? Why not, researchers ask

Duckweed as a cost-competitive raw material for biofuel

CLIMATE SCIENCE
Robots take over

A swarm on every desktop: Robotics experts learn from public

European researchers envision wearable exoskeleton for factory workers

Ultra-fast trading robots can send markets out of control

CLIMATE SCIENCE
Installation of the first AREVA turbines at Trianel Windpark Borkum and Global Tech 1

Trump's suit to halt wind farm project to be heard in November

Ireland connects first community-owned wind farm to grid

Moventas significantly expands wind footprint

CLIMATE SCIENCE
China, the global auto industry's best hope

Australia researchers unveil 'attention-powered' car

New steering tech for heavy equipment saves fuel, ups efficiency

AllCell's Self-Cooling 48V Micro-Hybrid Battery Solves Hot Parking Lot Problem

CLIMATE SCIENCE
Arctic drilling needs federal standards

Russian court detains eight more Greenpeace crew members

Libya oil crisis imperils badly needed investment in energy

Indonesia ripe for U.S. investment in shale gas?

CLIMATE SCIENCE
Plastic pad clogs up Fukushima water cleaning system

Anti-radiation fence at Fukushima has hole: TEPCO

Fukushima operator seeks reactor restart

Iran to take control of Russian-built reactor 'Monday'

CLIMATE SCIENCE
Nigeria signs $1.3 bn power plant deal with China

Myanmar's energy sector boosted by World Bank investment

ASEAN region has potential for 70 percent green energy

Clean energy least costly to power America's electricity needs

CLIMATE SCIENCE
Indonesia, EU seal pact to stop illegal timber exports

Seeing the forest and the trees

Uphill for the trees of the world

Tropical forests 'fix' themselves




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement