Solar Energy News  
SOLAR DAILY
HZB researchers are used to boost the efficiency of silicon solar cells
by Staff Writers
Berlin, Germany (SPX) Oct 08, 2018

Principle of a silicon singlet fission solar cell with incorporated organic crystalls.

The trick: they incorporate layers of organic molecules into the solar cell. These layers utilise a quantum mechanical process known as singlet exciton fission to split certain energetic light (green and blue photons) in such a way that the electrical current of the solar cell can double in that energy range.

The principle of a solar cell is simple: per incident light particle (photon) a pair of charge carriers (exciton) consisting of a negative and a positive charge carrier (electron and hole) is generated. These two opposite charges can move freely in the semiconductor.

When they reach the charge-selective electrical contacts, one only allows positive charges to pass through, the other only negative charges. A direct electrical current is therefore generated, which can be used by an external consumer.

The team around HZB researcher, Prof. Klaus Lips, gives now a solution to build the solar cell in such a way that certain high energy photons are used to generate two pairs of charge carrier simultaneously. The effect they used resides in some organic crystals and is known as "singlet exciton fission" (SF).

In order for this multiplier effect to be possible, charge carrier pairs have to fulfill certain quantum physical conditions: all their spins have to be parallel meaning charge carrier pairs called triplet exciton.

These triplet excitons are quite durable and very strongly bound together. The challenge was to split apart them at an interface to silicon. This unbinds the positive and negative charge carriers, permitting them to contribute to the solar cell's current.

In a pioneering experiment the researchers have shown the splitting to be possible. "With implementing this concept successfully, we can make a silicon solar cell with a maximum quantum efficiency of 200 percent (double the normal limit), and a theoretical efficiency limit of around 40 percent," says Dr. Rowan MacQueen, an Australian researcher who joined the HZB team two years ago and is realizing the charge carrier multiplier solar cell at the HZB.

In the recently-reported work, the HZB researchers integrated a 100 nanometer thick layer of singlet fission-capable tetracene crystals into the surface of a silicon solar cell. Using spectroscopic investigations, triplet charge carrier pairs in the thin tetracene layer were detected, a signature of singlet fission.

"The challenge was to separate the triplet pairs at the silicon interface without significantly disrupting the current flow of the silicon solar cell," explains Klaus Lips, since a poorly conducting organic layer borders on the well conducting silicon layer, a situation that could greatly impede the current flow.

The splitting succeeds with an additionally introduced organic conductor called PEDOT:PSS meaning another organic layer is necessary.

"The interfaces play a special role in this structure," says Dr. MacQueen, which is why the researchers used X-ray light from the BESSY II@HZB synchrotron to study the interface properties. They then fabricated a series of working tetracene-silicon solar cells. A key finding was that the addition of the organic layer did not impede the electrical performance of the silicon cell, which is critical for producing an efficient device.

The electrical performance of the first silicon singlet fission solar cell showed that tetracene absorbs the blue-green portion of the light, while low-energy photons are absorbed by the silicon. Using a simulation, the researchers were able to estimate that currently about 5-10 percent of the triplet pairs generated in the tetracene layer could be added to the output power.

For Klaus Lips this is a great success but he is already considering follow-up experiments: "With this solar cell structure, we have shown that the approach works in principle, and delivered a workhorse design. And we already know what we have to do to increase the yield of separated triplet excitons to up to 200 percent".

Research paper


Related Links
Helmholtz-Zentrum Berlin fur Materialien und Energie
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Renewable energy on rise in resource-poor Jordan
Amman (AFP) Sept 28, 2018
Set atop a mosque in the south of Jordan's capital, dozens of shimmering solar panels reflect a growing trend in the resource-poor desert kingdom as it tries combat its heavy reliance on imported energy. Standing in front of the Hamdan al-Qara mosque, Sheikh Adnan Yahya says that before installing the panels he used to pay up to 13,000 dinars ($18,350, 15,500 euros) a year for electricity. "The bill has now dropped to almost zero," says the imam. With panels popping up on the rooftops of hom ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
A biofuel for automated heat generation

Climate researchers: More green space, less biofuel

How a molecular signal helps plant cells decide when to make oil

Ready-to-use recipe for turning plant waste into gasoline

SOLAR DAILY
Machine learning could help regulators identify environmental violations

Machine-learning system tackles speech and object recognition, all at once

Amazon aims to make Alexa assistant bigger part of users' lives

Spray coated tactile sensor on a 3D surface for robotic skin

SOLAR DAILY
Wind turbines contribute to climate change: study

Wind Lidar company announces new turbine-mounted Lidar and formation of Measurement Services business

Wind Power: It is all about the distribution

Big wind, solar farms could boost rain in Sahara

SOLAR DAILY
Honda joins forces with GM's Cruise to develop autonomous vehicles

Spanish cities grapple with invasion of electric scooters

Tesla meets Model 3 target, bemoans China tariffs

Carmakers brace for shocks as electrified future looms

SOLAR DAILY
A new carbon material with Na storage capacity over 400mAh/g

What powers deep space travel

X-rays uncover a hidden property that leads to failure in a lithium-ion battery material

New battery gobbles up carbon dioxide

SOLAR DAILY
TVO joins FROG as EPR reactor operator

New concept to cool boiling surface may help prevent nuclear power plant accidents

First fuel cladding tubes delivered for "Hualong-1" nuclear power plant

Framatome wins I and C modernization contract for EDF's 900 MW reactors

SOLAR DAILY
How will climate change stress the power grid

Electricity crisis leaves Iraqis gasping for cool air

Energy-intensive Bitcoin transactions pose a growing environmental threat

Germany thwarts China by taking stake in 50Hertz power firm

SOLAR DAILY
How leaves talk to roots

National parks bear the brunt of climate change

Gabon pressures forestry firms on best practice

Chile launches immense scenic route connecting 17 national parks









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.