Solar Energy News  
WATER WORLD
Hanging by a thread: Why bent fibers hold more water
by Staff Writers
Logan UT (SPX) Apr 06, 2018

Researchers found the exact angle at which a bent fiber holds the most fluid. The research has many applications including drug manufacturing or developing technologies that use microfluidics.

On your next stroll through the woods, take a look at the dew droplets hanging from the leaves. If you see moisture on a cypress or juniper tree with their distinct bifurcated leaves, you'll likely see those water droplets defying the rules of physics.

Inspired by the large droplets that form on a leaf tip or other thin filament, a team of researchers from Utah State University, University of Liege, Belgium, and Brigham Young University have found the exact angle at which a bent fiber holds the most fluid. Their findings were published March 15 in the Royal Society of Chemistry's Soft Matter, a top journal covering physics, chemistry and biology.

Lead researcher Dr. Tadd Truscott, creator of the world-renowned Splash Lab at USU, says the study offers important insight into the field of fluid dynamics.

"For the first time, we can identify the exact angle of a bent fiber that will hold the most fluid," he said.

"This research has many industrial applications including drug manufacturing or in developing technologies that use microfluidics. This could also be useful in developing more efficient fog-collection nets which are becoming more popular in arid regions. Or on the other hand, this research could inspire a more efficient dehumidifier design."

Truscott uses the analogy of a spider web to illustrate the bent fiber concept. Water droplets attach to the web fibers at various locations, but the largest drops accumulate at the intersections of fibers that form acute angles. The best angle for a large droplet: 36 degrees.

"After experimental testing, we determined that a bent fiber forming a 36-degree angle traps the most water," Truscott added. "That amount is three times more than can be suspended on a horizontal fiber."

The researchers, including USU's Dr. Zhao Pan, Dr. Floriane Weyer and Dr. Nicolas Vandewalle of the University of Liege and Dr. William Pitt of BYU, tested their bent-fiber theory using a specially-constructed apparatus.

Drs. Weyer and Pan built a rigid circular frame and strung nylon fibers from one side of the frame to the other. Next they attached a narrower fiber at the center and pulled the original horizontal fiber upward, forming an upside-down v. By varying the fiber attachment locations, they could change the angle formed between the two halves of the bent fiber.

Liquids were applied to the fiber corner using a micro-pipette. The volume of the droplet increased incrementally until the droplet detached from the fiber.

Truscott and his colleagues at the Splash Lab used high-speed photography to capture the entire process. The footage and other details were then analyzed and mathematically modeled by USU's Zhao Pan with the help of William Pitt at BYU.

The researchers, of course, are not the first to be inspired by droplets in nature. The ancient poet Tu Fu (AD 712 - 770) recorded his observation of "heavy dew beads and trickles." Jules Renard penned a similar observation about 125 years ago: "A few dew drops on a spider web and here is a diamond river." Truscott says the droplet study offers a connection between science and art.

"That's the best part of our lab," he said. "We are science nerds from different cultures, but we are all passionate about literature and art."

Research paper


Related Links
Utah State University
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


WATER WORLD
'Fog harp' increases collection capacity for clean water
Blacksburg VA (SPX) Apr 03, 2018
Fog harvesting may look like whimsical work. After all, installing giant nets along hillsides and mountaintops to catch water out of thin air sounds more like folly than science. However, the practice has become an important avenue to clean water for many who live in arid and semi-arid climates around the world. A passive, durable, and effective method of water collection, fog harvesting consists of catching the microscopic droplets of water suspended in the wind that make up fog. Fog harvesting i ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
Notre Dame researchers developing renewable energy approach for producing ammonia

New insights into how cellulose is built could indicate how to break it

Sewage sludge leads to biofuels breakthrough

Wood pellets: Renewable, but not carbon neutral

WATER WORLD
Visual recognition: Seeing the world through the eyes of rodents

How accurate is your AI

Make way for the mini flying machines

Tokyo Tech's six-legged robots get closer to nature

WATER WORLD
The Evolution of Wind Power in 2017

China considering energy storage mandate for wind

Detection, deterrent system will help eagles, wind turbines coexist better

BP sees onshore wind as the cheapest future source of electricity

WATER WORLD
US investigating fatal Tesla crash in California

Tesla says 'Autopilot' was engaged during fatal crash

Tougher US rules needed on autonomous cars: advocate

Research hints at double the driving range for electric vehicles

WATER WORLD
Overcoming a battery's fatal flaw

A new way to find better battery materials

Researchers charge ahead to develop better batteries

Superconductivity in an alloy with quasicrystal structure

WATER WORLD
Nuclear safety: AREVA develops an innovative technology for reactor inspection

NRC approval brings Framatome's fuel technology closer to market

Putin launches Turkey nuclear project, vows faster arms delivery

UAE says its first nuclear reactor complete

WATER WORLD
Trump rolls back Obama-era fuel efficiency rules

Lights out for world landmarks in nod to nature

Puerto Rico power grid snaps, nearly 1 million in the dark

Grids from Turkmenistan, Afghanistan and Pakistan could be connected

WATER WORLD
Palm trees are spreading northward - how far will they go?

Soil fungi may help determine the resilience of forests to environmental change

Drought-induced changes in forest composition amplify effects of climate change

Amazon deforestation is close to tipping point









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.