Solar Energy News
STELLAR CHEMISTRY
Harnessing light with hemispherical shells
A hemispherical-shell-shaped organic active layer for photovoltaic application, to improve energy efficiency and angular coverage; (left bottom) spatial distribution of electric field norms.
Harnessing light with hemispherical shells
by Robert Schreiber
Berlin, Germany (SPX) Feb 22, 2024

In a groundbreaking study from Abdullah Gul University in Turkiye, researchers have developed a novel hemispherical shell structure for organic photovoltaic cells, significantly enhancing their light absorption and angular coverage. Published in the SPIE Journal of Photonics for Energy, this innovation could mark a pivotal shift in the quest for more efficient and sustainable solar energy solutions.

At the core of this research is a fresh take on the architecture of organic solar cells. Traditionally, these cells have been flat, but the team at Abdullah Gul University, led by Professor Dooyoung Hah, has turned to hemispherical shell shapes. This design is not just a departure from the conventional; it's a leap towards maximizing the cells' ability to capture light from a wide range of angles.

Using three-dimensional finite element analysis (FEA), a computational technique that breaks down complex structures into manageable parts for simulation, the researchers delved into the interactions between light and the cell's structure. The results were striking: when exposed to transverse electric (TE)-polarized light, the hemispherical design achieved a 66 percent increase in light absorption compared to its flat counterparts. For transverse magnetic (TM)-polarized light, the improvement was a robust 36 percent.

The hemispherical shell structure didn't just surpass traditional flat designs; it also outperformed semicylindrical shells previously reported in the field. It showed a 13 percent and a 21 percent increase in light absorption for TE and TM polarizations, respectively. This enhanced efficiency stems from the design's superior angular coverage, which spans up to 81 degrees for TE polarization and 82 degrees for TM polarization.

A Bright Future for Diverse Applications
Professor Hah's enthusiasm for the potential applications of this technology is palpable. "With the improved absorption and omnidirectionality characteristics, the proposed hemispherical-shell-shaped active layers will be found beneficial in various application areas of organic solar cells, such as biomedical devices, as well as applications such as power-generation windows and greenhouses, internet-of-things, and so on," he states.

The implications of this research extend far beyond the realms of traditional energy generation. The adaptability and efficiency of the hemispherical shell design could revolutionize the integration of solar power into a wide array of devices and settings, from wearable electronics to power-generating windows, highlighting its potential to contribute significantly to a more sustainable and energy-efficient future.

The full details of this innovative approach to solar cell design can be found in the study "Hemispherical-shell-shaped organic photovoltaic cells for absorption enhancement and improved angular coverage," published in the SPIE Journal of Photonics for Energy. This research not only paves the way for advanced organic photovoltaic technologies but also underscores the ongoing importance of sustainable energy solutions in addressing global energy challenges.

Research Report:Hemispherical-shell-shaped organic photovoltaic cells for absorption enhancement and improved angular coverage

Related Links
International Society for Optics and Photonics
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Light-matter interaction: broken symmetry drives polaritons
Berlin, Germany (SPX) Jan 15, 2024
An international team of scientists provide an overview of the latest research on light-matter interactions. A team of scientists from the Fritz Haber Institute, the City University of New York and the Universidad de Oviedo has published a comprehensive review article in the scientific journal Nature Reviews Materials. In this article, they provide an overview of the latest research on polaritons, tiny particles that arise when light and material interact in a special way. In recent years, researc ... read more

STELLAR CHEMISTRY
Watching the enzymes that convert plant fiber into simple sugars

Greenhouse gas repurposed in University of Auckland experiments

Inexpensive, carbon-neutral biofuels are finally possible

Microbial division of labor produces higher biofuel yields

STELLAR CHEMISTRY
New AI-video tool by maker of ChatGPT worries media creators

GITAI launches autonomous robotic arms for ISS external operations

Tech layoffs for AI, but Wall Street ready for stellar earnings

Musk says Neuralink installs brain implant in first patient

STELLAR CHEMISTRY
Wind-powered Dutch ship sets sail for greener future

Leaf-shaped generators create electricity from the wind and rain

European offshore wind enjoys record year in 2023

Danish firm to build huge wind farm off UK

STELLAR CHEMISTRY
Japan's electric vehicle transition by 2035 may be insufficient to combat the climate crisis, but there are solutions

Cheap mini-EVs sparkle in China's smaller, poorer cities

Tesla's German factory expansion plans suffer setback

Chinese EV giant BYD expects record net profit for 2023

STELLAR CHEMISTRY
In a doughnut in Japan, unlocking the power of the Sun

Rwanda signs lithium deal with Rio Tinto

Innovative use of femtosecond lasers converts glass into semiconductor

Innovative control of fusion plasma achieved through digital twin technology

STELLAR CHEMISTRY
GE Vernova receives regulatory approval to manufacture higher enrichment fuel

Could mini nuclear stations plug South Africa's power gaps

Sweden plans for new nuclear reactor in next decade

Russia, Venezuela to boost cooperation in energy, including nuclear

STELLAR CHEMISTRY
World needs 'trillions' for climate action: COP28 president

Von der Leyen's Green Deal: where does it stand?

Big firms with $7 tn exit climate investment pressure group

UK's opposition Labour Party ditches climate change pledge

STELLAR CHEMISTRY
A century of reforestation helped keep the eastern US cool

New mayor hopes trees will cool Athens down

Amazon rainforest may face tipping point by 2050: study

China-funded nickel hub stoking deforestation on Indonesia island: report

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.