Solar Energy News  
STELLAR CHEMISTRY
Harnessing the powers of light to operate computers
by Staff Writers
Tsukuba, Japan (SPX) Apr 29, 2022

Fluorescence images of SPP WPs shown in this of time-resolved two-photon fluorescence movie gif

It is said that light is the source of life, and in the near future, it will possibly form the basis of our everyday personal computing needs too. Recently, researchers from the University of Tsukuba have harnessed specific energies of light from a 'packet' of light by creating a nanocavity, which may help in the development of future all-optical computers.

Fiber optic cables already take advantage of the unimaginably fast speed of light to transmit internet data. However, these signals first need to be converted into electrical impulses in the circuitry of your computer or smart TV before you can watch your favorite streaming show. Researchers are working on developing new all-optical computers that will be able to perform computations using light pulses. However, it is often difficult to precisely control packets of light energy, and new devices are needed to shape the light pulses in a switchable manner.

In a study published last month in Nanophotonics, researchers at the University of Tsukuba have tested a new metallic waveguide that contains a tiny nanocavity, just 100 nanometers long. The nanocavity size is specifically tailored so that only specific wavelengths of light can fit inside.

This makes the nanocavity act almost like an artificial atom with tunable properties. As a result, light waves with matching resonant energy are transmitted, while other wavelengths are blocked. This has the effect of reshaping the light wave packet.

The team used light waves that travel along the interface of the metal and air, called "surface plasmon polaritons." This involves coupling the motion of the light wave in the air with the motion of the electrons in the metal directly below it. "You can imagine a surface plasmon polariton as like what happens when a strong wind blows across the ocean. The water waves and air waves flow in concert," senior author Professor Atsushi Kubo says.

The waveguide was fabricated using a dye with fluorescence properties that changed based on the presence of the light energy. The team used light chirps only 10 femtoseconds (i.e., 10 quadrillionth of a second) long and created a "movie" of the resulting waves using time-resolved two-photon fluorescent microscopy. They found that only the spectral component matching the resonant energy of the nanocavity was able to continue propagating along the metal surface.

"The ability to selectively reshape waveforms will be key to the development of future optical computers," Professor Kubo says. The results of this project may also help streamline the designs of other devices for ultrafast optical spectroscopy.

Research Report:Femtosecond imaging of spatial deformation of surface plasmon polariton wave packet during resonant interaction with nanocavity


Related Links
University of Tsukuba
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
AFRL engineer highlights illuminating photonics work in lab life podcast
Wright-Patterson AFB OH (SPX) Apr 05, 2022
Dr. Monica Allen, principal research electronics engineer from the Air Force Research Laboratory's Munitions Directorate at Eglin Air Force Base, Florida, is the featured guest on AFRL's "Lab Life" podcast, which is now available. "Lab Life" brings listeners behind the scenes with Department of the Air Force scientists, engineers and professionals who are developing tomorrow's technologies today. In this episode, Allen highlights her field of expertise, discusses her latest projects, explore ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Using human energy to heat buildings will pay off

Dung power: India taps new energy cash cow

Biden's biofuel: Cheaper at the pump, but high environmental cost?

Fuel from waste wood

STELLAR CHEMISTRY
An easier way to teach robots new skills

Molecular robots work cooperatively in swarms

A flexible way to grab items with feeling

Introducing SQuRo, a novel small-sized robotic rat with high movement agility

STELLAR CHEMISTRY
Transport drones for offshore wind farms

Lack of marshaling ports hindering offshore wind industry

Favourable breezes boost Spain's wind power sector

Brazil to hold first offshore wind tender by October: official

STELLAR CHEMISTRY
Tesla recalls second batch of cars in China on safety concerns

German prosecutors conduct raids in Suzuki diesel probe

GM announces it will make electric Corvette

Ferrari to recall more than 2,200 cars in China over brake risk

STELLAR CHEMISTRY
Using excess heat to improve electrolyzers and fuel cells

Machine learning, harnessed to extreme computing, aids fusion energy development

Electric, low-emissions alternatives to carbon-intensive industrial processes

A catalyst for the development of carbon-neutral technology of the radiation accelerator

STELLAR CHEMISTRY
UN watchdog 'concerned' about Ukraine nuclear plant access

Finnish group scraps nuclear plant deal with Russia's Rosatom

Finnish nuclear reactor OL3 delayed again to September

'Operating normally': Russia shows seized Ukraine nuclear plant

STELLAR CHEMISTRY
Canada stumbling in transition to low-carbon economy

EU needs to recycle more to hit green energy goals: report

Paris climate targets feasible if nations keep vows

Lots of low- and no-cost ways to halt global warming

STELLAR CHEMISTRY
10 football pitches of pristine rainforest lost per minute in 2021

DRCongo suspends 'illegal' forestry concessions

Planet Partners with Canadian universities to research boreal forests

Indigenous lands block Brazil deforestation: study









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.