Solar Energy News  
Has SOHO Ended A 30-Year Quest For Solar Ripples

Now, however, astronomers using the Global Oscillation at Low Frequency (GOLF) instrument on SOHO think they may have caught glimpses of this behaviour. Instead of looking for an individual oscillation, they looked for the signature of the cumulative effect of a large number of these oscillations. By analogy, imagine that the Sun was an enormous piano playing all the notes simultaneously. Instead of looking for a particular note (middle C for instance) it would be easier to search for all the 'C's, from all the octaves together. In the piano their frequencies are related to each other just as on the Sun, one class of g modes are separated by about 24 minutes.
by Staff Writers
Paris, France (ESA) May 04, 2007
The ESA-NASA Solar and Heliospheric Observatory (SOHO) may have glimpsed long-sought oscillations on the Sun's surface. The data will reveal details about the very core of our central star and it contains clues as to how the Sun formed, 4.6 billion years ago. The subtle variations reveal themselves as a minuscule ripple in the overall movement of the solar surface. Astronomers have been searching for ripples of this kind since the 1970s, when they first detected that the solar surface was oscillating in and out.

The so-called 'g-modes' are driven by gravity and provide information about the deep interior of the Sun. They are thought to occur when gas churning below the solar surface plunges even deeper into our star and collides with denser material, sending ripples propagating through the Sun's interior and up to the surface. It is the equivalent of dropping a stone in a pond.

Unfortunately for observers, these waves are badly degraded during their passage to the solar surface. By the time g-modes reach the exterior, they are little more than ripples a few metres high. To make matters more difficult, the g-modes take between two and seven hours to oscillate just once. So, astronomers are faced with having to detect a swell on the surface that rises a metre or two over several hours.

Now, however, astronomers using the Global Oscillation at Low Frequency (GOLF) instrument on SOHO think they may have caught glimpses of this behaviour. Instead of looking for an individual oscillation, they looked for the signature of the cumulative effect of a large number of these oscillations.

By analogy, imagine that the Sun was an enormous piano playing all the notes simultaneously. Instead of looking for a particular note (middle C for instance) it would be easier to search for all the 'C's, from all the octaves together.

In the piano their frequencies are related to each other just as on the Sun, one class of g modes are separated by about 24 minutes.

"So that's what we looked for, the cumulative effect of several g modes," says Rafael A. Garc�a, DSM/DAPNIA/Service d'Astrophysique, France. They combined ten years of data from GOLF and then searched for any hint of the signal at 24 minutes. They found it.

"We must be cautious but if this detection is confirmed, it will open a brand new way to study the Sun's core," says Garc�a.

Until now, the rotation rate of the solar core was uncertain. If the GOLF detection is confirmed, it will show that the solar core is definitely rotating faster than the surface.

The rotation speed of the solar core is an important constraint for investigating how the entire Solar System formed, because it represents the hub of rotation for the interstellar cloud that eventually formed the Sun and all the bodies around it. The next step for the team is to refine the data to increase their confidence in the detection. To do this, they plan to incorporate data from other instruments, both on SOHO and at ground-based observatories.

"By combining data from space (VIRGO and MDI, on SOHO) and ground (GONG and BiSON) instruments, we hope to improve this detection and open up a new branch of solar science," says Garc�a.

Related Links
SOHO at ESA
Solar Science News at SpaceDaily
Solar Science News at SpaceDaily



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Next Solar Storm Cycle Will Start Late
Washington DC (SPX) Apr 27, 2007
The next 11-year cycle of solar storms will most likely start next March and peak in late 2011 or mid-2012 -- up to a year later than expected -- according to a forecast issued by the NOAA Space Environment Center in coordination with an international panel of solar experts. The NOAA Space Environment Center led the prediction panel and issued the forecast at its annual Space Weather Workshop in Boulder, Colo. NASA sponsored the panel.







  • UniStar Nuclear Identifies Constellation Energy's Calvert Cliffs As Site For First Potential New NPP
  • Atomstroyexport Puts Chinese NPP's 2nd Unit To Minimum Capacity
  • Nuclear Storm Gathers As Climate Change Experts Meet
  • Dominion Signs Contract With GE Energy For Long-Lead Nuclear Components

  • Crucial Climate Change Agreement Reached After Fierce Debate
  • Australian Cattle Scour Roadsides For Food As Drought Worsens
  • Drought Resistance Is Key To Plants In Tropical Forests
  • China, India, Brazil Hold Up Climate Change Talks

  • Thai Scientists Fear Global Warming Could Empty World Rice Bowl
  • Climate Change Threatens Indonesian Rice Farmers
  • Asian Demand For Shark Fins Threatens Colombian Species
  • Fish Growth Enhanced By Climate Change

  • Scientists Offer New View Of Photosynthesis
  • Are Corals More Complex Than You
  • Amphibians In Losing Race With Environmental Change
  • Military Technology Battles Poachers With Satellite Signals

  • Rocketdyne Scramjet Engine Powers Up In First X-51A Simulated Flight
  • UP Aerospace Readies Rocket For April 28 Launch
  • NASA Modifies Orion Crew Exploration Vehicle Contract
  • ATK, LockMart and PW Rocketdyne Present Proposal For Ares I Upper Stage



  • Volcanic Eruptions In Kamchatka
  • NASA Satellite Captures Image Of Georgia Wildfires
  • US Earth-Observing Satellites In Jeopardy
  • Exploring Caves From 30 Feet In The Air

  • Designing OPRA Glasses
  • A Swell Time For Gels
  • Patriot Antenna Systems To Commercialise CSIRO MultiBeam Satellite Communications Technology
  • New Family Of Pseudo-Metallic Chemicals Could Create New Electronic Materials

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement