Solar Energy News  
IRON AND ICE
Hayabusa2 reveals more secrets from Ryugu
by Staff Writers
Tokyo, Japan (SPX) May 12, 2020

History of Ryugu. A diagram to show how researchers believe the surface of Ryugu evolved over time 2020 Morota et al. See larger images here

In February and July of 2019, the Hayabusa2 spacecraft briefly touched down on the surface of near-Earth asteroid Ryugu. The readings it took with various instruments at those times have given researchers insight into the physical and chemical properties of the 1-kilometer-wide asteroid. These findings could help explain the history of Ryugu and other asteroids, as well as the solar system at large.

When our solar system formed around 5 billion years ago, most of the material it formed from became the sun, and a fraction of a percent became the planets and solid bodies, including asteroids.

Planets have changed a lot since the early days of the solar system due to geological processes, chemical changes, bombardments and more. But asteroids have remained more or less the same as they are too small to experience those things, and are therefore useful for researchers who investigate the early solar system and our origins.

"I believe knowledge of the evolutionary processes of asteroids and planets are essential to understand the origins of the Earth and life itself," said Associate Professor Tomokatsu Morota from the Department of Earth and Planetary Science at the University of Tokyo. "Asteroid Ryugu presents an amazing opportunity to learn more about this as it is relatively close to home, so Hayabusa2 could make a return journey relatively easily. "

Hayabusa2 launched in December 2014 and reached Ryugu in June 2018. At the time of writing, Hayabusa2 is on its way back to Earth and is scheduled to deliver a payload in December 2020.

This payload consists of small samples of surface material from Ryugu collected during two touchdowns in February and July of 2019. Researchers will learn much from the direct study of this material, but even before it reaches us, Hayabusa2 helped researchers to investigate the physical and chemical makeup of Ryugu.

"We used Hayabusa2's ONC-W1 and ONC-T imaging instruments to look at dusty matter kicked up by the spacecraft's engines during the touchdowns," said Morota. "We discovered large amounts of very fine grains of dark-red colored minerals. These were produced by solar heating, suggesting at some point Ryugu must have passed close by the sun."

Morota and his team investigated the spatial distribution of the dark-red matter around Ryugu as well as its spectra or light signature. The strong presence of the material around specific latitudes corresponded to the areas that would have received the most solar radiation in the asteroid's past; hence, the belief that Ryugu must have passed by the sun.

"From previous studies we know Ryugu is carbon-rich and contains hydrated minerals and organic molecules. We wanted to know how solar heating chemically changed these molecules," said Morota.

"Our theories about solar heating could change what we know of orbital dynamics of asteroids in the solar system. This in turn alters our knowledge of broader solar system history, including factors that may have affected the early Earth."

When Hayabusa2 delivers material it collected during both touchdowns, researchers will unlock even more secrets of our solar history. Based on spectral readings and albedo, or reflectivity, from within the touchdown sites, researchers are confident that both dark-red solar-heated material and gray unheated material were collected by Hayabusa2. Morota and his team hope to study larger properties of Ryugu, such as its many craters and boulders.

"I wish to study the statistics of Ryugu's surface craters to better understand the strength characteristics of its rocks, and history of small impacts it may have received," said Morota.

"The craters and boulders on Ryugu meant there were limited safe landing locations for Hayabusa2. Finding a suitable location was hard work and the eventual first successful touchdown was one of the most exciting events of my life."

Research paper


Related Links
University Of Tokyo
Asteroid and Comet Mission News, Science and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


IRON AND ICE
Hayabusa2's touchdown on Ryugu reveals its surface in stunning detail
Washington DC (SPX) May 08, 2020
High-resolution images and video were taken by the Japanese space agency's Hayabusa2 spacecraft as it briefly landed to collect samples from Ryugu - a nearby asteroid that orbits mostly between Earth and Mars - allowing researchers to get an up-close look at its rocky surface, according to a new report. During the touchdown Hayabusa2 obtained a sample of the asteroid, which it will bring back to Earth in December 2020. The detailed new observations of Ryugu's surface during the touchdown operation ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Fossil fuel-free jet propulsion with air plasmas

How new materials increase the efficiency of direct ethanol fuel cells

Water is key in catalytic conversion of methane to methanol

Researchers make key advance toward production of important biofuel

IRON AND ICE
How many jobs do robots really replace?

Study finds stronger links between automation and inequality

Robots help some firms, even while workers across industries struggle

Artificial tongue with gold taste buds to test maple syrup

IRON AND ICE
Wave, wind and PV: The world's first floating Ocean Hybrid Platform

Supercomputing future wind power rise

Wind energy expansion would have $27 billion economic impact

Opportunity blows for offshore wind in China

IRON AND ICE
Uber losses widen but appetite grows for Eats

How we might recharge an electric car as it drives

California sues Uber and Lyft for calling drivers 'contractors'

Uber cuts 3,700 jobs amid pandemic slump

IRON AND ICE
Supercapacitor promises storage, high power and fast charging

New Princeton study takes superconductivity to the edge

KIST develops high-performance ceramic fuel cell that operates on butane gas

Researchers tackle a new opportunity to develop high-energy batteries

IRON AND ICE
Study reveals single-step strategy for recycling used nuclear fuel

Framatome and the Technical University of Munich to develop new fuel for research reactor

Are salt deposits a solution for nuclear waste disposal?

Framatome awarded to modernize research reactor at Technical University of Munich

IRON AND ICE
New map highlights China's export-driven CO2 emissions

COVID-19 to cause record emissions fall in 2020: IEA

Europe's banks not doing enough on climate: pressure group

DLR rethinks carbon pricing process

IRON AND ICE
Brazil to deploy army to fight Amazon deforestation

Look beyond rainforests to protect trees, scientists say

Deforestation in Africa accelerates: UN food agency

With attention on virus, Amazon deforestation surges









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.