Solar Energy News  
TECH SPACE
Healable carbon fiber composite offers path to long-lasting, sustainable materials
by Staff Writers
Seattle WA (SPX) Nov 08, 2021

Researchers have created a new type of carbon fiber reinforced material that is as strong and light as traditionally used materials, but can be repeatedly healed with heat, reversing any fatigue damage. This also provides a way to break it down and recycle it when it reaches the end of its life. Aniruddh Vashisth, University of Washington assistant professor of mechanical engineering developed atomic-scale simulation software (seen on the monitor in the background) to help understand the underlying mechanics of the new material.

Because of their high strength and light weight, carbon-fiber-based composite materials are gradually replacing metals for advancing all kinds of products and applications, from airplanes to wind turbines to golf clubs. But there's a trade-off. Once damaged or compromised, the most commonly-used carbon fiber materials are nearly impossible to repair or recycle.

In a paper published Nov. 2 in the journal Carbon, a team of researchers describes a new type of carbon fiber reinforced material that is as strong and light as traditionally used materials but can be repeatedly healed with heat, reversing any fatigue damage. This also provides a way to break it down and recycle it when it reaches the end of its life.

"Developing fatigue-resistant composites is a major need in the manufacturing community," said co-lead author Aniruddh Vashisth, University of Washington assistant professor of mechanical engineering. "In this paper, we demonstrate a material where either traditional heat sources or radio frequency heating can be used to reverse and postpone its aging process indefinitely."

The material is part of a recently developed group known as carbon fiber reinforced vitrimers, named after the Latin word for glass, that show a mix of solid and fluid properties. The materials typically used today, whether in sporting goods or aerospace, are carbon fiber reinforced polymers.

Traditional carbon fiber reinforced polymers typically fall into two categories: thermoset or thermoplastic. The "set" variety contains an epoxy, a glue-like material where the chemical links holding it together harden permanently. The "plastic" version contains a softer type of glue so it can be melted back down and reworked, but this becomes a drawback for high strength and stiffness. Vitrimers on the other hand, can link, unlink and relink, providing a middle ground between the two.

"Imagine each of these materials is a room full of people," Vashisth said. "In the thermoset room, all of the people are holding hands and won't let go. In the thermoplastic room, people are shaking hands and moving all around. In the vitrimer room people shake hands with their neighbor but they have the capacity to exchange handshakes and make new neighbors so that the total number of interconnections remains the same. That reconnection is how the material gets repaired and this paper was the first to use atomic-scale simulations to understand the underlying mechanisms for those chemical handshakes."

The research team believes vitrimers could be a viable alternative for many products currently manufactured from thermosets, something badly needed because thermoset composites have begun piling up in landfills. The team says that healable vitrimers would be a major shift toward a dynamic material with a different set of considerations in terms of life-cycle cost, reliability, safety and maintenance.

"These materials can translate the linear life cycle of plastics to a circular one, which would be a great step toward sustainability," said co-senior author Nikhil Koratkar, professor of mechanical, aerospace and nuclear engineering at Rensselaer Polytechnic Institute.

The research team also includes Mithil Kamble and Catalin Picu at Rensselaer Polytechnic Institute and Hongkun Yang and Dong Wang at the Beijing University of Chemical Technology. This research was funded by the U.S. Army and NASA through the Vertical Lift Research Centers of Excellence program, the National Science Foundation, the John A. Clark and Edward T. Crossan Chair Professorship at Rensselaer Polytechnic Institute, the University of Washington, and the company Software for Chemistry and Materials.

Research Report: "Reversing fatigue in carbon-fiber reinforced vitrimer composites"


Related Links
University Of Washington
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
An artificial material that can sense, adapt to its environment
Columbia MO (SPX) Nov 03, 2021
Move over, Hollywood - science fiction is getting ready to leap off the big screen and enter the real world. While recent science fiction movies have demonstrated the power of artificially intelligent computer programs, such as the fictional character J.A.R.V.I.S. in the Avenger film series, to make independent decisions to carry out a set of actions, these imagined movie scenarios could now be closer to becoming a reality. In a recent study published in Nature Communications, a journal of Nature, ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Bioenergy crops better for biodiversity than food-based agriculture

Recycling CO2 to fuel a carbon-neutral future

Converting methane to methanol - with and without water

Making aircraft fuel from sunlight and air

TECH SPACE
This robot doesn't need to knock

A personalized exosuit for real-world walking

Giving robots social skills

They'll lead the robots out

TECH SPACE
Green hydrogen from expanded wind power in China

Scientists bring efficiency to expanding offshore wind energy

From oil to renewables, winds of change blow on Scottish islands

US unveils plans for seven major offshore wind farms

TECH SPACE
Top carmaker Toyota defends skipping COP26 emissions pledge

Producers target 2040 end date for polluting vehicles

DoorDash takes aim at Europe with purchase of Wolt

Battle the algorithms: China's delivery riders on the edge

TECH SPACE
Radio-frequency wave scattering improves fusion simulations

New scalable method resolves materials joining in solid-state batteries

Large-scale synthesis methods for single-atom catalysts for alkaline fuel cells

Surrey researchers reveal the hidden behaviour of supercapacitor materials

TECH SPACE
Rolls-Royce launches nuclear reactor business

Greenland passes law banning uranium mining

Macron says France to build more nuclear reactors

Options for the Diablo Canyon nuclear plant

TECH SPACE
COP26 strikes hard-fought deal but UN says 'not enough'

World needs trillions to face climate threat: draft UN report

COP26 draft urges boost to emissions cutting goals by 2022

Countries far apart as climate talks enter final week

TECH SPACE
'We can't live in a world without the Amazon': scientist

Amazon deforestation threatens jaguars, giant eagles

New gold rush fuels Amazon destruction

The Amazon: a paradise lost?









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.