Solar Energy News  
MICROSAT BLITZ
Heliophysics CubeSat to Launch on NASA's SLS
by Sarah Frazier for Goddard News
Greenbelt MD (SPX) Feb 04, 2016


On Feb. 2, 2016, NASA announced which CubeSats will fly on the inaugural flight of the agency's Space Launch System in late 2018. CubeSats are small satellites, about the size of a cereal box, which provide an inexpensive way to access space. This file photo shows a set of NanoRacks CubeSats in space after their deployment in 2014. Image courtesy NASA. For a larger version of this image please go here.

Just a bit bigger than a box of cereal, one of the first CubeSats to travel in interplanetary space will be NASA's miniature space science station, dedicated to studying the dynamic particles and magnetic fields that stream from the sun.

The CubeSat to study Solar Particles, or CuSP, will hitch a ride out of Earth orbit aboard NASA's Space Launch System, or SLS, which is scheduled for an uncrewed test launch in late 2018.

Once the CubeSat is ejected, it will orbit around the sun in interplanetary space, measuring incoming radiation that can create a wide variety of effects at Earth, from interfering with radio communications to tripping up satellite electronics to creating electric currents in power grids.

"CuSP will be able to observe events in space hours before they reach Earth," said Mihir Desai, the principal investigator for CuSP at the Southwest Research Institute in San Antonio, Texas. "Such interplanetary observations would give us significant insight into what drives space weather, helping scientists to improve their simulations."

CuSP is a six-unit CubeSat, meaning it has a total volume of about six liters. This micro-satellite will carry three instruments, and the observations from those instruments will give us an unprecedented look at our interplanetary space environment, which is driven by the sun.

The sun releases a constantly-flowing stream of particles and magnetic fields, known as the solar wind. Interspersed are faster, denser clouds of solar wind material, known as coronal mass ejections, or CMEs.

When these CMEs - or even a particularly fast stream of solar wind - reach Earth, they can interact with Earth's magnetic field, creating what's called a geomagnetic storm. It is the buffeting of the magnetic fields and the release of energy that can stress power grids and impact space technology. To understand these effects on Earth, scientists want to track how the space environment changes and develops between the sun and Earth.

Currently, measurements of the space environment come from a dozen or so satellites, all carrying different sets of instruments. Most of these satellites are in one of two basic orbits - circling either Earth or the L1 Lagrange point, a point between Earth and the sun about a million miles from us.

"Right now, it's like we're trying to understand weather for the entire Pacific Ocean with just a handful of weather stations," said Eric Christian, lead Goddard scientist for CuSP. "We need to collect data from more locations."

To create a network of space weather stations would require many instruments scattered throughout space millions of miles apart. But the cost of putting together such a system built out of full-fledged satellite missions is prohibitive. CubeSats like CuSP might be able to help solve the problem. Though the satellites can only carry a few instruments apiece, they're relatively inexpensive to launch because of their small mass and standardized design. So, CuSP also serves as a test for creating a network of space science stations.

"If you had, say, 20 CubeSats in different orbits, you could really start to understand the space environment in three dimensions," said Christian.

The three instruments that CuSP carries will each provide a different contribution. The Suprathermal Ion Spectrograph, or SIS, is built by the Southwest Research Institute to detect and characterize low-energy solar energetic particles.

NASA Goddard's Miniaturized Electron and Proton Telescope, or MERiT, will return counts of high-energy solar energetic particles. Finally, the Vector Helium Magnetometer, or VHM, being built by NASA's Jet Propulsion Laboratory, will measure the strength and direction of magnetic fields.

CuSP was born of opportunity. Originally CuSPP, for CubeSat to study Solar Particles over the Poles, it was slated to fly in low-Earth orbit, studying solar particles near Earth's poles. But when the call went out for CubeSats to fly on SLS, the team realized they had an opportunity to do some serious interplanetary space weather research for a fraction of the usual cost.

With only a relatively small amount of additional funding to reconfigure the satellite and instruments, the team won a spot on SLS for a ride to interplanetary space.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
CubeSats at NASA
Microsat News and Nanosat News at SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
MICROSAT BLITZ
Philippines to launch its 1st satellite in April: department
Manila (XNA) Jan 20, 2016
The Philippines is set to launch into space its first microsatellite in April, the Department of Science and Technology (DOST) said on Monday. Named as Diwata, the first all-Filipino assembled microsatellite, could be used in improved weather detection and forecasts, disaster risk management, detecting agricultural growth patterns, and the monitoring of forest cover, mining, protection of ... read more


MICROSAT BLITZ
UCR research advances oil production in yeast

Assessment aims to maximize greenhouse gas reductions from bioenergy

One-stop shop for biofuels

Automakers' green push lifts use of hemp, citrus peel

MICROSAT BLITZ
Russia launches ambitious cosmic robotics project

Thales, ASV to jointly develop unmanned surface vehicle technology

NASA counting on humanoid robots in deep space exploration

Scientists urge world to stop killer robots

MICROSAT BLITZ
Mechanical trees generate power as they sway in the wind

Enormous blades could lead to more offshore energy in US

Health concerns in wind energy developments

New partners in British offshore wind

MICROSAT BLITZ
Renault opens first China factory

Dutch test first self-drive minibuses

Bumpy road ahead for electric cars: Tesla boss

Germany approves scandal-hit VW's recall plan for 2.0-litre cars

MICROSAT BLITZ
Clarifying the role of magnetism in high-temperature superconductors

Heavy fermions get nuclear boost on way to superconductivity

Cornell researchers create first self-assembled superconductor

Putting silicon 'sawdust' in a graphene cage boosts battery performance

MICROSAT BLITZ
India Connects First Unit of Kudankulam NPP to National Electric Grid

Germany reassured "for now" over Belgian nuclear plants

Britain says 'good progress' being made on nuclear plant

Struggling Areva plans 5 bn euro capital increase

MICROSAT BLITZ
Rapid, affordable energy transformation possible

Iraq inks $328 mn deal with GE to boost power production

Australian farmers to benefit from renewables boost

War Between Saudi Arabia And Iran Could Send Oil Prices To $250

MICROSAT BLITZ
Study documents drought's impact on redwood forest ferns

Canada protects ancient Pacific coast forest from logging, hunting

Landscape pattern analysis reveals global loss of interior forest

Over-hunting threatens Amazonian forest carbon stocks









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.