Solar Energy News  
TECH SPACE
Heterometallic copper-aluminum superatom discovered
by Staff Writers
Munich, Germany (SPX) Sep 27, 2018

From the outside, the cluster made of 55 copper and aluminum atoms looks like a crystal, but chemically it has the properties of an atom. The heterometallic superatom created at Chair of Inorganic and Organometallic Chemistry at the Technical University of Munich is the largest ever produced in the laboratory.

On the outside, the cluster made of 55 copper and aluminum atoms looks like a crystal, but chemically it has the properties of an atom. The heterometallic superatom which chemists of the Technical University of Munich (TUM) have created provides the prerequisites for developing new, more cost-effective catalysts.

Chemistry can be expensive. For example, platinum is used to clean exhaust gases. This precious metal acts as a catalyst which speeds up chemical reactions. Without catalysts, it would not be possible to carry out a large number of processes in the chemical industry.

"Many groups of researchers are experimenting with new material compounds made of lower-cost base metals such as iron, copper, or aluminum. However, so far nobody has been able to predict whether, how, and why these catalysts react", explains Roland Fischer, Professor for Inorganic and Metal-Organic Chemistry at the TUM. "Our goal was to bridge this gap and to create the basis for understanding a new generation of catalysts."

Bottom-up approach yields results
Together with his team, the chemist has now uncovered a secret of base metal compounds. "What was new about our approach was that we did not examine existing materials, but instead went bottom-up and built compounds made of individual copper and aluminum atoms", explains Fischer.

Combining two metals at the atomic level requires no small amount of know-how and finesse: Within a protective argon atmosphere, the chemists combined the metal atoms which were bound to organic compounds in a test tube, to which they then added a solvent.

"Naturally, we hoped that the copper and aluminum atoms would separate from the organic compounds and form a cluster together. But whether they would actually do that and what the result would be was entirely unclear", remembers Fischer.

The secret of the crystals
Hence, the chemists were extremely delighted to find that reddish-black particles with a diameter of up to one millimeter had formed at the bottom of the test tube. X-ray images revealed an extremely complex structure: In each case, 55 copper and aluminum atoms were arranged such that they formed a crystal whose surface consisted of 20 equilateral triangles.

Crystallographers call such shapes icosahedrons Additional experiments showed that chemically, the crystals react like an individual copper atom and are also paramagnetic, which means that they are attracted by a magnetic field.

An explanation for the extraordinary properties of the metal clusters was provided by Prof. Jean-Yves Saillard from the French university in Rennes: According to him, 43 and 12 aluminum atoms organize themselves into a "superatom" in which the metals form a shared electron shell which resembles that of a single metal atom.

Hence, the cluster has the chemical properties of an atom. Located on the outermost shell are three valence electrons whose spins align themselves in a magnetic field - hence the observed paramagnetism.

Knowledge base for new catalysts
The heterometallic superatom by the researchers in Munich is the largest one ever made in the lab. "That it formed spontaneously, i.e. without the input of energy, out of a solution is an extremely remarkable outcome", emphasizes Fischer. "It shows that the arrangement of 55 atoms constitutes an island of stability and hence determines the direction in which the chemical reaction takes place."

The researchers now intend to use the findings of the research project to develop fine-grained and hence highly effective catalyst materials. "We are still far away from being able to use it in applications", emphasizes Fischer. "But based on what we have now achieved, we can verify the suitability of copper-aluminum clusters for catalytic processes and also create clusters made of other promising metals."

Research Report: "The Mackay-type cluster [Cu43Al12](Cp*)12: Open-shell 67electron superatom with emerging metal-like electronic structure"


Related Links
Technical University of Munich
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Malaysia government to review Australia rare earths plant
Kuala Lumpur (AFP) Sept 25, 2018
An ardent critic of an Australian rare earths plant in Malaysia said Tuesday she will head a government review into the controversial site after her political alliance took power at landmark elections. Shares of Australian miner Lynas have been hit since reports emerged that MP Fuziah Salleh had been picked to probe the plant, which has long been opposed by green groups over concerns it produces dangerous radioactive waste. The factory began processing rare earths sent from Australia in 2012. Th ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Photosynthesis discovery could help next-gen biotechnologies

Ready-to-use recipe for turning plant waste into gasoline

After 150 years, a breakthrough in understanding the conversion of CO2 to electrofuels

New method more than doubles sugar production from plants

TECH SPACE
Amazon aims to make Alexa assistant bigger part of users' lives

Spray coated tactile sensor on a 3D surface for robotic skin

'Robotic skins' turn everyday objects into robots

Russian scientists send FEDOR robot to Roscosmos for launch

TECH SPACE
Wind Power: It is all about the distribution

Big wind, solar farms could boost rain in Sahara

DNV GL supports creation of China's first HVDC offshore wind substation

China pushes wind energy efforts further offshore

TECH SPACE
Late to the party, German carmakers join race against Tesla

Drivers for Uber, Lyft see incomes fall as participation jumps

Renault-Nissan alliance takes Google Android for a drive

Ford CEO warns tariffs cut $1 bn in profit: report

TECH SPACE
What powers deep space travel

New battery gobbles up carbon dioxide

X-rays uncover a hidden property that leads to failure in a lithium-ion battery material

A novel approach of improving battery performance

TECH SPACE
Framatome wins I and C modernization contract for EDF's 900 MW reactors

Framatome to deliver ATRIUM 11 fuel to Talen Energy's Susquehanna Station

US Nuclear Lab Building Micro-Reactor That Can Power an Army Brigade

Engie denies plans to sell Belgian nuclear plants

TECH SPACE
Electricity crisis leaves Iraqis gasping for cool air

Energy-intensive Bitcoin transactions pose a growing environmental threat

Germany thwarts China by taking stake in 50Hertz power firm

Global quadrupling of cooling appliances to 14 billion by 2050

TECH SPACE
Wetlands disappearing three times faster than forests: study

Once majestic Atlantic Forest 'empty' after 500 years of over-exploitation

Coastal wetlands will survive rising seas, but only if we let them

Coal plant offsets with carbon capture means covering 89 percent of the US in forests









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.