Solar Energy News  
TIME AND SPACE
High value for Hubble Constant from two gravitational lenses
by Staff Writers
Garching, Germany (SPX) Sep 16, 2019

In the upper panel images of the two lensing systems used in this study, B1608+656 and RXJ1131 are shown. Labels A to D denote images of the background quasar, G1 and G2 are lens galaxies on the left, G is the lens galaxy on the right with a satellite galaxy S. The lower panel shows a Derived Hubble Diagram, using the two lens systems (red and yellow dots) as anchors for the 740 supernovae in the JLA dataset.

The expansion rate of the universe today is described by the so-called Hubble constant, and different techniques have come to inconsistent results about how fast our universe actually does expand.

An international team led by the Max Planck Institute for Astrophysics (MPA) has now used two gravitational lenses as new tools to calibrate the distances to hundreds of observed supernovae and thus measure a fairly high value for the Hubble constant. While the uncertainty is still relatively large, this is higher than that inferred from the cosmic microwave background.

Gravitational lensing describes the fact that light is deflected by large masses in the universe, just like a glass lens will bend a light right on Earth. In recent years, cosmologists have increasingly used this effect to measure distances by exploiting the fact that, in a multiple image system, an observer will see photons arriving from different directions at different times due to the difference in optical path lengths for the various images.

This measurement thus gives a physical size of the lens, and comparing it to an observed size in the sky gives a geometric distance estimate called the "angular diameter distance."

Such distance measurements in astronomy are the basis for measurements of the Hubble constant, named after the astronomer Edwin Hubble, who found a linear relationship between the redshifts (and thus the expansion velocity of the universe) and the distances of galaxies (which was also independently found by Georges Lemaitre).

"There are multiple ways to measure distances in the universe, based on our knowledge of the object whose distance is being measured," explains Sherry Suyu (MPA/TUM), who is a world expert in using gravitational lensing for determining the Hubble constant.

"A well-known technique is the luminosity distance using supernovae explosions; however, they must adopt an external calibrator of the absolute distance scale. With our analysis of gravitational lens systems we can provide a completely new, independent anchor for this method."

The team used two strong gravitational lens systems, B1608+656 and RXJ1131 (see Figure 1). In each of these systems, there are four images of a background galaxy with one or two foreground galaxies acting as lenses.

This relatively simple configuration allowed the scientists to produce an accurate lensing model and thus measure the angular diameter distances to a precision of 12 to 20% per lens. These distances were then applied as anchors to 740 supernovae in a public catalogue (Joint Light-curve Analysis dataset).

"By construction, our method is insensitive to the details of the assumed cosmological model," states Inh Jee (MPA), who did the statistical analysis and combined the supernova data with the lensing distances.

"We get a fairly high result for the Hubble constant and although our measurement has a larger uncertainty than other direct methods, this is dominated by statistical uncertainty because we use only two lens systems."

The value for the Hubble constant based on this new analysis is about 82 +/- 8 km/s/Mpc. This is consistent with values derived from the distance ladder method, which uses different anchors for the supernova data, as well as with values from time-delay distances, where other gravitational lensing systems were used to determine the Hubble constant directly.

"Again this new measurement confirms that there seems to be a systematic difference in values for the Hubble constant derived directly from local or intermediate sources and indirectly from the cosmic microwave background," states Eiichiro Komatsu, director at MPA, who oversaw this project.

"If confirmed by further measurements, this discrepancy would call for a revision of the standard model of cosmology."

Research Report: "A Measurement of the Hubble Constant from Angular Diameter Distances to Two Gravitational Lenses,"


Related Links
Max Planck Institute For Astrophysics
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
New Measurement Adds to Mystery of Universe's Expansion Rate
Baltimore MD (SPX) Jul 17, 2019
Astronomers have made a new measurement of how fast the universe is expanding, using an entirely different kind of star than previous endeavors. The revised measurement, which comes from NASA's Hubble Space Telescope (http://www.nasa.gov/hubble), falls in the center of a hotly debated question in astrophysics that may lead to a new interpretation of the universe's fundamental properties. Scientists have known for almost a century that the universe is expanding, meaning the distance between galaxie ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Plant research could benefit wastewater treatment, biofuels and antibiotics

Fe metabolic engineering method produces butanetriol sustainably from biomass

Rice reactor turns greenhouse gas into pure liquid fuel

Methane-producing microorganism makes a meal of iron

TIME AND SPACE
Russia terminates robot Fedor after space odyssey

At NY Fashion Week, robotic dresses take on a life of their own

'Sense of urgency', as top tech players seek AI ethical rules

Psychosensory electronic skin technology for future AI and humanoid development

TIME AND SPACE
Government vows action as German wind industry flags

Angry residents send German wind industry spinning

Colombia's biggest wind power portfolio purchased by AES Colombia

Growth of wind energy points to future challenges, promise

TIME AND SPACE
DLR unveils the Urban Modular Vehicle

Slovak PM woos foreign automakers vowing state aid for e-cars

California law on rideshare drivers may hurt 'gig economy'

US opens probe of 4 automakers over California emissions pact

TIME AND SPACE
First report of superconductivity in a nickel oxide material

Breakthrough enables storage and release of mechanical waves without energy loss

Coating developed by Stanford researchers brings lithium metal battery closer to reality

Physicists' study demonstrates silicon's energy-harvesting power

TIME AND SPACE
Japan's new environment minister wants to scrap nuclear power

Four candidates running to lead UN nuclear watchdog

Russia launches floating nuclear reactor in Arctic despite warnings

US Govt issues new safety rules for launching nuclear systems into space

TIME AND SPACE
Macro-energy systems and the science of the energy transition

Oslo wants to reduce its emissions by 95 percent by 2030

Northern Irish pensioner thrives in off grid cottage

Global warming = more energy use = more warming

TIME AND SPACE
Bolsonaro's scorched earth diplomacy could cost Brazil

Should the international community protect the Amazon?

Diversity breeds stability in forest ecosystems

Pope pleads with Madagascans to protect rainforest









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.