Solar Energy News  
TECH SPACE
'Hot' electrons don't mind the gap
by Staff Writers
Houston TX (SPX) May 17, 2017


Rice University scientists discovered that 'hot' electrons can create a photovoltage about a thousand times larger than ordinary temperature differences in nanoscale gaps in gold wires. On the left, a laser-heated, bowtie-shaped plasmonic gold nanowire created a small voltage in the wire. On the right, a gold nanowire with a nanogap under the same light source showed a much stronger voltage at the break. Credit Natelson Group/Rice University

If they're quick about it, "hot" electrons excited in a plasmonic metal can tunnel their way across a nanoscale gap to a neighboring metal. Rice University scientists said the cool part is what happens in the gap.

A Rice team discovered those electrons can create a photovoltage about a thousand times larger than what is seen if there is no gap. The finding shows it should be possible to create nanoscale photodetectors that convert light into electricity and can be used as sensors or in other sophisticated electronics.

Results from the Rice lab of condensed matter physicist Douglas Natelson appear in the American Chemical Society's Journal of Physical Chemistry Letters.

Natelson's lab studies the electronic, magnetic and optical properties of nanoscale structures, often by testing the properties of systems that can only be viewed under a microscope.

Some studies involve whole gold nanowires, and sometimes the lab breaks the wire to form a gap of just a few nanometers (billionths of a meter). One goal is to understand whether and how electrons leap the nanogap under various conditions, like ultracold temperatures.

While looking at such structures, the researchers found themselves studying the nanoscale characteristics of what's known as the Seebeck (thermoelectric) effect, discovered in 1821, in which heat is converted to electricity at the junction of two wires of different metals. Seebeck discovered that a voltage would form across a single conductor when one part is hotter than the other.

"If you want to make thermostats for your house or your car climate control, this is how you do it," Natelson said.

"You join together two dissimilar metals to make a thermocouple, and stick that junction where you want to measure the temperature. Knowing the difference between the Seebeck coefficients of the metals and measuring the voltage across the thermocouple, you can work backward from that to get the temperature."

To see how it works in a single metal on the nanoscale, Natelson, lead author and former postdoctoral researcher Pavlo Zolotavin and graduate student Charlotte Evans used a laser to induce a temperature gradient across a bowtie-shaped gold nanowire.

That created a small voltage, consistent with the Seebeck effect. But with a nanogap splitting the wire, "the data made clear that a different physical mechanism is at work," they wrote.

Gold is a plasmonic metal, one of a class of metals that can respond to energy input from a laser or other source by exciting plasmons on their surfaces. Plasmon excitations are the back-and-forth sloshing of electrons in the metal, like water in a basin.

This is useful, Natelson explained, because oscillating plasmons can be detected. Depending on the metal and its size and shape, these plasmons may only show up when prompted by light at a particular wavelength.

In the bowties, laser light absorbed by the plasmons created hot electrons that eventually transferred their energy to the atoms in the metal, vibrating them as well. That energy is dissipated as heat.

In continuous, solid wires, the temperature difference caused by the laser also created small voltages. But when nanogaps were present, the hot electrons passed through the void and created much larger voltages before dispersing.

"It's a neat result," Natelson said. "The main points are, first, that we can tune the thermoelectric properties of metals by structuring them on small scales, so that we can make thermocouples out of one material. Second, a focused laser can act as a scannable, local heat source, letting us map out those effects. Shining light on the structure produces a small photovoltage.

"And third, in structures with truly nanoscale tunneling gaps (1-2 nanometers), the photovoltage can be a thousand times larger, because the tunneling process effectively uses some of the high-energy electrons before their energy is lost to heat," he said. "This has potential for photodetector technologies and shows the potential that can be realized if we can use hot electrons before they have a chance to lose their energy."

Gold seems to be the best metal to show the effect so far, Natelson said, as control experiments with gold-palladium and nickel nanogapped wires did not perform as well.

The researchers acknowledge several possible reasons for the dramatic effect, but they strongly suspect tunneling by the photo-generated hot carriers is responsible.

"You don't need plasmons for this effect, because any absorption, at least in a short time, is going to generate these hot carriers," Zolotavin said. "However, if you've got plasmons, they effectively increase the absorption. They interact with light very strongly, and the effect gets bigger because the plasmons make the absorption bigger."

Research paper

TECH SPACE
Collective electrostatic effects are used to intentionally manipulate material properties
Styria, Austria (SPX) May 17, 2017
Computational materials design is traditionally used to improve and further develop already existing materials. Simulations grant a deep insight into the quantum mechanical effects which determine material properties. Egbert Zojer and his team at the Institute of Solid State Physics of TU Graz go a decisive step beyond that: they use computer simulations to propose an entirely new concept ... read more

Related Links
Rice University
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Microbial fuel cell converts methane to electricity

Genome sequence of fuel-producing alga announced

New breakthrough makes it easier to turn old coffee waste into cleaner biofuels

Enhancing the efficiency of cereal straw for biofuel production

TECH SPACE
Virtual top hats allow swarming robots to fly in tight formation

Building a better 'bot': Artificial intelligence helps human groups

GE Appliances to get Google voice control option

Live interactions with robots increase their perceived human likeness

TECH SPACE
Scientists track porpoises to assess impact of offshore wind farms

Dutch open 'world's largest offshore' wind farm

OX2 will manage a 45 MW wind farm owned by IKEA Group in Lithuania

Building Energy celebrates the beginning of operations and electricity generation of its first wind farm

TECH SPACE
GM announces drive for sustainable rubber

Judge curbs Uber engineer in trade secrets case

Volvo says may pull brake on diesel engines

Judge seeks criminal review of Uber-Alphabet dispute

TECH SPACE
Electroplating delivers high-energy, high-power batteries

Laser pulses reveal the superconductors of the future

Understanding of superconductor's 'normal' state may help solve longstanding puzzle

Harnessing geometric frustration to tune batteries for greater power

TECH SPACE
India to build 10 domestic nuclear power reactors

Japan restarts another reactor

Coatings for nuclear fuel preventing explosions in reactors, developed at TPU

South Africa to restart nuclear power plans

TECH SPACE
Australia power grid leased to local-foreign consortium

Poland central to EU energy diversification strategy

Myanmar recovery linked to development of electrical grid

U.S. emissions generally lower last year

TECH SPACE
The superhighway threatening Nigeria's tropical rainforest

Greenpeace says Canadian forestry lawsuit aims to silence critics

Study refutes findings behind challenge to Sierra Nevada forest restoration

Microscopic soil creatures could orchestrate massive tree migrations









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.