Solar Energy News  
TIME AND SPACE
Hot on the heels of quasiparticles
by Staff Writers
Zurich, Switzerland (SPX) Nov 07, 2016


A polaron (orange) is formed amidst the electrons (violet) inside a solid. Image courtesy ETH Zurich and Meinrad Sidler. For a larger version of this image please go here.

If one tries to understand weather phenomena, it's not much use looking at the behaviour of single water droplets or air molecules. Instead, meteorologists (and also laymen) speak of clouds, winds and precipitation - objects that result from the complex interplay between small particles.

Physicists dealing with the optical properties or the conductivity of solids use much the same approach. Again, tiny particles - electrons and atoms - are responsible for a multitude of phenomena, but an illuminating picture only emerges when many of them are grouped into "quasiparticles".

However, finding out precisely what quasiparticles arise inside a material and how they influence one another is not a simple task, but more akin to a large puzzle whose pieces fit together, little by little, through arduous research. In a combination of experimental and theoretical studies, Atac Imamoglu and his collaborators at the Institute for Quantum Electronics at the ETH in Zurich have now succeeded in finding a new piece of the puzzle, which also helps to put a previously misplaced piece in its correct position.

Excitons and polarons
In solids quasiparticles can be created, for instance, when a photon is absorbed. The motional energy of electrons teeming about in a solid can only take values within well-defined ranges known as bands. A photon can promote an electron from a low-lying to a high-lying energy band, thus leaving behind a "hole" in the lower band.

The excited electron and the resulting hole attract each other through the electrostatic Coulomb force, and if that attraction is strong enough, the electron-hole pair can be viewed as a quasiparticle - an "exciton" is born. Two electrons and a hole can bind together to form a trion. When excitons and a large number of free electrons are simultaneously present however, the description of the qualitatively new - or "emergent" - properties of the material requires the introduction of new type of quasiparticles called Fermi polarons.

Quasiparticles in a semiconductor
Imamoglu and his colleagues wanted to find out the nature of quasiparticles that appear in a certain type of semiconductors in which electrons can only move in two dimensions. To do so, they took a single layer of molybdenum diselenide that is thousand times thinner than a micrometer and sandwiched it between two disks of boron nitride. They then added a layer of graphene in order to apply an electric voltage with which the density of electrons in the material could be controlled. Finally, everything was placed between two mirrors that formed an optical cavity.

With this complex experimental setup the physicists in Zurich could now study in detail how strongly the material absorbs light under different conditions. They found that when the semiconductor structure is optically excited, Fermi-polarons are formed - and not, as previously thought, excitons or trions. "So far, researchers - myself included - have misinterpreted the data available at the time in that respect", admits Imamoglu. "With our new experiments we are now able to rectify that picture."

Team effort with a guest scientist
"This was a team effort with essential contributions by Harvard professor Eugene Demler, who collaborated with us over several months when he was an ITS fellow", says Meinrad Sidler who is a doctoral student in Imamoglus group.

Since 2013 the Institute for Theoretical Studies (ITS) of the ETH has endeavoured to foster interdisciplinary research at the intersection between mathematics, theoretical physics and computer science. In particular, it wants to facilitate curiosity-driven research with the aim of finding the best ideas in unexpected places.

The study by Imamoglu and his colleagues, now published in "Nature Physics", is a good example for how this principle can be successful. In his own research, Eugene Demler deals with ultracold atoms, studying how mixtures of bosonic and fermionic atoms behave. "His insight into polarons in atomic gases and solids have given our research important and interesting impulses, which we may not have come up with on our own", says Imamoglu.

Light induced superconductivity
The insights they have gathered will most likely keep Imamoglu and his collaborators busy for some time to come, as the interactions between bosonic (such as excitons) and fermionic (electrons) particles are the topic of a large research project for which Imamoglu won an Advanced Grant of the European Research Council (ERC) last year, and is also supported by the National Centre of Competence in Research Quantum Science and Technology (NCCR QSIT).

A better understanding of such mixtures would have important implications for basic research, but exciting applications also beckon. For instance, a key goal of the ERC project is the demonstration of control of superconductivity using lasers.

Sidler M, Back P, Cotlet O, Srivastava A, Fink T, Kroner M, Demler E, Imamoglu A: Fermi polaron-polaritons in charge-tunable atomically thin semiconductors. Nature Physics, 31 October 2016, doi: 10.1038/nphys3949


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
ETH Zurich
Understanding Time and Space






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Weak atomic bond, theorized 14 years ago, observed for first time
West Lafayette IN (SPX) Nov 02, 2016
A Purdue University physicist has observed a butterfly Rydberg molecule, a weak pairing of two highly excitable atoms that he predicted would exist more than a decade ago. Rydberg molecules are formed when an electron is kicked far from an atom's nucleus. Chris Greene, Purdue's Albert Overhauser Distinguished Professor of Physics and Astronomy, along with his co-authors H. Sadeghpour and E. Hami ... read more


TIME AND SPACE
Bioelectronics at the speed of life

NREL finds bacterium that uses both CO2 and cellulose to make biofuels

State partnerships can promote increased bio-energy production, reduce emissions

Turning biofuel waste into wealth in a single step

TIME AND SPACE
Chemists develop world's first light-seeking synthetic Nanorobot

'Bots' step up for 2016 election news coverage

Bio-inspired lower-limb 'wearing robotic exoskeleton' for human gait rehab

US warned against Chinese takeover of German firm: report

TIME AND SPACE
Alberta pushing hard on renewable energy pedal

Cuomo announces major progress in offshore wind development

New York set for offshore wind after environmental review

OX2 signs 148 MW wind power deal with Aquila Capital and Google

TIME AND SPACE
VW's Audi hit with fresh emissions cheating lawsuit

Nissan aims for China launch of cheap electric car in 2 years

VW makes progress towards 3.0 l diesel settlement: judge

Pedestrians walk freely in a world of self-driving cars

TIME AND SPACE
Physicists induce superconductivity in non-superconducting materials

PPPL physicists build diagnostic that measures plasma velocity in real time

Salty batteries

Lithium ion extraction

TIME AND SPACE
Russia, China Plan Documents to Build 2 New Tianwan Nuclear Power Plant Reactors

Japan, India to ink controversial nuclear deal next week: reports

Rosatom Considers No Restrictions on Commercial Supplies of Uranium to US

A new method to help solve the problem of nuclear waste

TIME AND SPACE
Deeper carbon cuts needed to avoid climate tragedy: UN

New program makes energy-harvesting computers more reliable

Australian consortium buys power grid after Chinese bid blocked

UNESCO urges Bangladesh to scrap Sundarbans plant

TIME AND SPACE
Mangrove protection key to survival for Senegalese community

Morocco's oases fight back creeping desert sands

Database captures most extensive urban tree sizes, growth rates across United States

New warning over spread of ash dieback









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.