Solar Energy News  
TIME AND SPACE
How an Atomic Clock Will Get Humans to Mars on Time
by Staff Writers
Pasadena CA (JPL) Jun 17, 2019

.

NASA navigators are helping build a future where spacecraft could safely and autonomously fly themselves to destinations like the Moon and Mars.

Navigators today tell a spacecraft where to go by calculating its position from Earth and sending the location data to space in a two-way relay system that can take anywhere from minutes to hours to deliver directions. This method of navigation means that no matter how far a mission travels through the solar system, our spacecraft are still tethered to the ground, waiting for commands from our planet.

That limitation poses obvious problems for a future crewed mission to another planet. How can astronauts navigate far from Earth if they don't have immediate control over where they're going? And how can they accurately land on another planet when there's a communication delay that affects how quickly they can adjust their trajectory into the atmosphere?

NASA's Deep Space Atomic Clock is a toaster-size device that aims to answer those questions. It's the first GPS-like instrument small and stable enough to fly on a spacecraft. The technology demonstration enables the spacecraft to know where it is without needing to rely on that data from Earth. In late June, the clock will launch on the SpaceX Falcon Heavy rocket into Earth's orbit for one year, where it will test whether it can help spacecraft locate themselves in space.

If the Deep Space Atomic Clock's trial year in space goes well, it could pave the way for a future of one-way navigation in which astronauts are guided by a GPS-like system across the surface of the Moon or can safely fly their own missions to Mars and beyond.

"Every spacecraft exploring deep space is steered by navigators here on Earth. Deep Space Atomic Clock will change that by enabling onboard autonomous navigation, or self-driving spacecraft," said Jill Seubert, the deputy principal investigator.

There's No GPS in Deep Space
Atomic clocks in space aren't new. Every GPS device and smartphone determines its location via atomic clocks on satellites orbiting Earth. The satellites send signals from space, and the receiver triangulates your position by measuring how long the signals take to reach your GPS.

Currently, spacecraft flying beyond Earth's orbit don't have a GPS to find their way through space. Atomic clocks on GPS satellites aren't accurate enough to send directions to spacecraft, when being off by even less than a second could mean missing a planet by miles.

Instead, navigators use giant antennas on Earth to send a signal to the spacecraft, which bounces it back to Earth. Extremely precise clocks on the ground measure how long it takes the signal to make this two-way journey. The amount of time tells them how far away the spacecraft is and how fast it's going. Only then can navigators send directions to the spacecraft, telling it where to go.

"It's the same exact concept as an echo," said Seubert. "If I'm standing in front of a mountain and I shout, the longer it takes for the echo to come back to me, the farther away the mountain is."

Two-way navigation means that no matter how deep into space a mission goes, it still has to wait for a signal carrying commands to cross the vast distances between planets. It's a process made famous by Mars landings like Curiosity, when the world waited 14 long minutes with mission control for the rover to send the message that it landed safely. That delay is an average wait time: Depending on where Earth and Mars are in their orbits, it can take anywhere from 4 to 20 minutes for a one-way signal to travel between planets.

It's a slow, laborious way to navigate in deep space, one that ties up the giant antennas of NASA's Deep Space Network like a busy phone line. During this exchange, a spacecraft flying at tens of thousands of miles per hour could be in an entirely different place by the time it "knows" where it is.

A Better Way to Navigate
An atomic clock small enough to fly on a mission but precise enough to give accurate directions could eliminate the need for this two-way system. Future navigators would send a signal from Earth to a spacecraft. Like its Earthly cousins, the Deep Space Atomic Clock onboard would measure the amount of time it took that signal to reach it. The spacecraft could then calculate its own position and trajectory, essentially giving itself directions.

"Having a clock onboard would enable onboard radio navigation and, when combined with optical navigation, make for a more accurate and safe way for astronauts to be able to navigate themselves," said Deep Space Atomic Clock Principal Investigator Todd Ely.

This one-way navigation has applications for Mars and beyond. DSN antennas would be able to communicate with multiple missions at a time by broadcasting one signal into space. The new technology could improve the accuracy of GPS on Earth. And multiple spacecraft with Deep Space Atomic Clocks could orbit Mars, creating a GPS-like network that would give directions to robots and humans on the surface.

"The Deep Space Atomic Clock will have the ability to aid in navigation, not just locally but in other planets as well. One way to think of it is as if we had GPS at other planets," said Eric Burt, the ion clock development lead.

Burt and fellow JPL clock physicists Robert Tjoelker and John Prestage created a mercury ion clock, which maintains its stability in space in the same way as refrigerator-size atomic clocks on Earth. In lab tests, the Deep Space Atomic Clock proved to be 50 times more accurate than GPS clocks. That's an error of 1 second every 10 million years.

The clock's demonstration in space will determine whether it can remain stable in orbit. If it does, a Deep Space Atomic Clock could fly on a mission as early as the 2030s. The first step toward self-driving spacecraft that could one day carry humans to other worlds.

The Deep Space Atomic Clock is hosted on a spacecraft provided by General Atomics Electromagnetic Systems of Englewood, Colorado. It is sponsored by the Technology Demonstration Missions program within NASA's Space Technology Mission Directorate and the Space Communications and Navigations program within NASA's Human Exploration and Operations Mission Directorate. JPL manages the project.

Here's five things to know about NASA's Deep Space Atomic Clock


Related Links
Space Communications and Navigations program at NASA
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Five Things to Know about NASA's Deep Space Atomic Clock
Pasadena CA (JPL) Jun 06, 2019
NASA is sending a new technology to space on June 22 that will change the way we navigate our spacecraft - even how we send astronauts to Mars and beyond. Built by NASA's Jet Propulsion Laboratory in Pasadena, California, the Deep Space Atomic Clock is a technology demonstration that will help spacecraft navigate autonomously through deep space. No larger than a toaster oven, the instrument will be tested in Earth orbit for one year, with the goal of being ready for future missions to other ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
New core-shell catalyst for ethanol fuel cells

One-two-punch catalysts trapping CO2 for cleaner fuels

Plastic water bottles may one day fly people cross-country

Fuels out of thin air: New path to capturing and upgrading CO2

TIME AND SPACE
Investing in Tech Concepts Aimed at Exploring Lunar Craters, Mining Asteroids

Army project develops agile scouting robots

Better together: human and robot co-workers

British art dealer unveils pioneering robot artist

TIME AND SPACE
Can sound protect eagles from wind turbine collisions?

UK hits historic coal-free landmark

BayWa r.e. sells its first Australian wind farms to Epic Energy

The complicated future of offshore wind power in the US

TIME AND SPACE
Somebody's watching you: The surveillance of self-driving cars

Fiat Chrysler taps Aurora for self-driving commercial vehicles

BMW partners Jaguar Land Rover to develop electric engine

Uber names Melbourne as first non-US city for flying car program

TIME AND SPACE
Researchers introduce novel heat transport theory in quest for efficient thermoelectrics

AI and high-performance computing extend evolution to superconductors

Scientists found a way to increase the capacity of energy sources for portable electronics

Flexible generators turn movement into energy

TIME AND SPACE
Framatome receives DoE GAIN voucher to support development of Lightbridge Fuel

GE Hitachi begins vendor review of its BWRX-300 SMR with Canada's nuclear commission

World's second EPR nuclear reactor starts work in China

Bio-inspired material targets oceans' uranium stores for sustainable nuclear energy

TIME AND SPACE
New York takes aim at skyscrapers' sky-high energy usage

Canada must double its carbon tax to reach emissions target

Florida air conditioning pioneer first dismissed as a crank

Speed bumps on German road to lower emissions

TIME AND SPACE
Big brands breaking pledge to not destroy forests: report

Some older forests better suited to change with the climate

Sri Lanka to ban chainsaws, timber mills: president

A forest 'glow' reveals awakening from hibernation









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.