Solar Energy News  
EARLY EARTH
How and when spines changed in mammalian evolution
by Staff Writers
Boston MA (SPX) Feb 04, 2020

Illustration of Dimetrodon, pelycosaur synapsid, showing the elaborate backbone sail. This study shows that despite their bizarre sails, it is likely that their vertebral movements were relatively uniform along their back, more similar to living lizards or salamanders than to mammals.

A new study from Harvard University and the Field Museum of Natural History sheds light on how and when changes in the spine happened in mammal evolution. The research reveals how a combination of developmental changes and adaptive pressures in the spines of synapsids, the extinct forerunners of mammals, laid the groundwork for the diversity of backbones seen in mammals today.

By comparing the biomechanics of two modern animals, cat and lizard, and CT scans of synapsid fossils, the researchers overturned the traditional notion that the gradual accumulation of different regions (or independent sections) of the spine alone account for its evolving complexity.

New evidence suggests that regions (like the thorax and lower back) evolved long before new spinal functions, such as bending and twisting. The study points to the idea that the right selective pressures or animal behaviors combined with existing physical regions played a significant role in the evolution of their unique functions.

The findings by Stephanie Pierce, Associate Professor of Organismic and Evolutionary Biology and Curator of Vertebrate Paleontology at Harvard, and postdoctoral researcher Katrina Jones tap into the larger question of how mammals, including humans, evolved over millions of years.

Modern mammals, for instance, have developed compartmentalized spinal regions that take on a number of diverse shapes and functions without affecting other spinal regions. This has allowed the animals to adapt to different ways of life, explained Jones.

In previous research, the authors showed that extinct pre-mammalian land animals developed these small but distinct regions during evolution.

"What we were able to show in 2018 was that even though all the vertebrae looked very similar in early mammal ancestors they had subtle differences and those subtle differences created distinct developmental regions," Pierce said. "What we're showing with this new study is that those distinct regions were really important as they provided the raw material that facilitated functional differentiation to happen. Basically, if you don't have these distinct developmental regions in place and you have a selective pressure, all the vertebrae are going to adapt in the same way."

It's long been thought that developing different spinal regions is one important step in evolving backbones with many functions, but Pierce and Jones show that this isn't enough. An evolutionary trigger was also required, in this case the evolution of a highly active lifestyle that put new demands on the backbone.

Jones said, "We're trying to get at something that's quite a fundamental evolutionary question which is: How does a relatively simple structure evolve into a complex one that can do lots of different things? Is that determined by the limitations of development or natural selection related to the behavior of the animal?"

The researchers compared the spines of two animals essentially on opposite ends of the evolutionary and anatomical spectrum: cat, which has highly developed spinal regions, and lizard, which has a pretty uniform backbone. They looked at how each animal's spinal joints bent in different directions to measure how the form of the vertebrae reflects their function. They determined that while some spinal regions can function differently from one to the other, others do not; for example, the lizard's backbone comprised several distinct regions, but they all acted in the same way.

Researchers including Kenneth Angielczyk from the Field Museum of Natural History then turned their focus to finding out when different regions started taking on different functions in the evolution of mammals. They took the cat and lizard data showing that if two joints in the spine looked different, then they tended to have different functions. With that, they mapped out how spinal function in those fossils changed through time.

"The earliest ancestors of mammals have a remarkably good fossil record, considering that those animals lived between about 320 and 250 million years ago," Angielczyk said.

The researchers found that despite having developmental regions capable of performing different functions, the level of functional variation seen in mammals today did not start to take hold until late in synapsid evolution.

"We then hypothesized that maybe it was the evolution of some new mammalian behaviors that helped trigger this [in these late synapsids] and provided the natural selection that could exploit the regions that were already there," Jones said.

Their findings fit with observations that the group in which this functional diversity occurs - the cynodonts, which directly preceded mammals - have a number of mammalian features, including evidence they could breathe like a mammal. The researchers believe that these mammal-like features shifted the job of breathing away from the backbone and ribs to the newly evolved diaphragm muscle, releasing the spine from an ancient biomechanical constraint. This enabled the backbone to adapt to interesting new behaviors, such as grooming fur, and take on new functions.

The next step for Pierce and Jones is to clarify what those functions looked like in these extinct animals.

Research paper


Related Links
Harvard University
Explore The Early Earth at TerraDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EARLY EARTH
Unusual carnivorous dinosaurs called noasaurids lived in Australia
Washington DC (UPI) Jan 30, 2020
New fossil evidence suggests an unusual group of predatory dinosaurs called noasaurids lived in Australia during the middle to late Cretaceous Period. Noasaurids were small-bodied carnivores that walked on two legs and were characterized by a variety of unique facial features. The largest of the diminutive meat eaters stretched no more than seven feet in length. Most weighed less than 50 pounds. Noasaurid fossils had previously been recovered from all of the landmasses that made up the s ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
Vast amounts of valuable energy, nutrients, water lost in world's fast-rising wastewater streams

UCF researchers work on project to develop cleaner-burning, renewable fuels

New way of recycling plant-based plastics instead of letting them rot in landfill

Ecofriendly catalyst for converting methane into useful gases using light instead of heat

EARLY EARTH
NASA funds demonstration of assembly and manufacturing in space

Progressing towards assuredly safer autonomous systems

OFFSET Swarm Systems Integrators Demonstrate Tactics to Conduct Urban Raid

Progressing Towards Assuredly Safer Autonomous Systems

EARLY EARTH
UK looks to offshore wind for green energy transition

Britain's green energy sector brightens: survey data

Consider marine life when implementing offshore renewable power

Supporting structures of wind turbines contribute to wind farm blockage effect

EARLY EARTH
Hyundai suspends domestic production over China outbreak

UK to ban new petrol car sales from 2035

Tesla stock zooms as carmaker marks earnings 'turning point'

GM revives Hummer as all-electric vehicle

EARLY EARTH
Closely spaced hydrogen atoms could facilitate superconductivity in ambient conditions

Making high-temperature superconductivity disappear to understand its origin

Nonflammable electrolyte for high-performance potassium batteries

New electrode design may lead to more powerful batteries

EARLY EARTH
GE Hitachi Nuclear Energy and CEZ signs small modular reactor tech deal with Czech Republic

Framatome signs contracts with Tennessee Valley Authority

GE Hitachi Nuclear Energy begins NRC licensing process for BWRX-300 Small Modular Reactor

Molecule modification could improve reprocessing of spent nuclear fuel

EARLY EARTH
New research could aid cleaner energy technologies

ECB's Lagarde warns of 'danger of doing nothing' on climate

Climate crisis spawns high tide of greenwashing

Thunberg, Trump to offer competing visions at climate-focused Davos

EARLY EARTH
Trees struggle when forests become too small

Pygmy chief arrested for destroying forest in DR Congo park

Some trees respond to weight increases by thickening their stems

Yanomami leader pleads with world to save Amazon from Bolsonaro









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.