Solar Energy News
WOOD PILE
How trees influence cloud formation
The main anthropogenic gas that contributes to the formation of particles is sulphur dioxide in the form of sulphuric acid, mainly from burning coal and oil. The most important natural gases involved are so-called isoprenes, monoterpenes and sesquiterpenes. These are hydrocarbons that are mainly released by the vegetation.
How trees influence cloud formation
by Jan Berndorff for PSI News
Wurenlingen, Switzerland (SPX) Sep 15, 2023

As part of the international CLOUD project at the nuclear research centre CERN, researchers at PSI have identified so-called sesquiterpenes - gaseous hydrocarbons that are released by plants - as being a major factor in cloud formation. This finding could reduce uncertainties in climate models and help make more accurate predictions. The study has now been published in the journal Science Advances.

According to the latest projections of the Intergovernmental Panel on Climate Change (IPCC), the global climate will be 1.5 to 4.4 degrees Celsius warmer than pre-industrial levels by 2100. This figure is based on various scenarios describing how anthropogenic greenhouse gas emissions may develop in the future. So in the best case, if we manage to curb emissions quickly and radically, we can still meet the 1.5 degree target of the Paris Agreement. In the worst case, we will end up far above that. However, such projections are also subject to some uncertainty. In the worst-case scenario, for example, with emissions continuing to increase sharply, the rise in temperature could be as low as 3.3 or as high as 5.7 degrees Celsius, rather than 4.4 degrees.

These uncertainties in predicting how temperatures will change as a result of concrete developments in greenhouse gas emissions are essentially due to the fact that scientists do not yet fully understand all the processes that occur in the atmosphere - the interactions between the various gases and aerosols in it. Establishing them is the aim of the CLOUD project (Cosmics Leaving Outdoor Droplets), an international collaboration between atmospheric researchers at the CERN nuclear research centre in Geneva. PSI helped to build the CLOUD chamber and is a member of the project's steering committee.

The mystery of cloud formation
Particularly the way in which cloud cover will develop in the future remains largely nebulous for the time being. However, this is a key factor in predicting the climate because more clouds reflect more solar radiation, thus cooling the earth's surface.

To form the droplets that make up clouds, water vapour needs condensation nuclei, solid or liquid particles on which to condense. These are provided by a wide variety of aerosols, tiny solid or liquid particles between 0.1 and 10 micrometres in diameter, which are produced and released into the air both by nature and by human activity. These particles can include salt from the sea, sand from the desert, pollutants from industry and traffic, or soot particles from fires, for example.

However, about half the condensation nuclei are actually formed in the air when different gaseous molecules combine and turn into solids, a phenomenon that experts call "nucleation" or "new particle formation" (NPF). To begin with, such particles are tiny, barely larger than a few nanometres, but over time they can grow through the condensation of gaseous molecules and then serve as condensation nuclei.

Greenhouse gases that you can smell
The main anthropogenic gas that contributes to the formation of particles is sulphur dioxide in the form of sulphuric acid, mainly from burning coal and oil. The most important natural gases involved are so-called isoprenes, monoterpenes and sesquiterpenes. These are hydrocarbons that are mainly released by the vegetation. They are key components of the essential oils that we smell when, for example, grass is cut or we go for a walk in the woods. When these substances oxidise, i.e. react with ozone, in the air they form aerosols.

"It should be noted that the concentration of sulphur dioxide in the air has decreased significantly in recent years due to stricter environmental legislation and it will continue to decrease," says Lubna Dada, an atmospheric scientist at PSI. "The concentration of terpenes, on the other hand, is increasing because plants release more of them when they experience stress - for example when there is an increase in temperatures and extreme weather conditions and vegetation is more frequently exposed to droughts."

The big question for improving climate predictions is therefore which of the factors will predominate, leading to an increase or a decrease in cloud formation. To answer this, one would need to know how each of these substances contributes to the formation of new particles. A great deal is already known about sulphuric acid, and the role of monoterpenes and isoprene is now also understood better thanks to measurements in the field and chamber experiments like CLOUD, in which PSI has been involved.

Sesquiterpenes are rare but effective
Until now, sesquiterpenes have not been a focus of research. "This is because they are quite difficult to measure," explains Dada. "Firstly because they react very quickly with ozone, and secondly because they occur much less frequently than the other substances." Around 465 million tonnes of isoprene and 91 million tonnes of monoterpenes are released every year, whereas sesquiterpenes account for just 24 million tonnes. Nevertheless, the new study, of which Dada is the lead author, has shown that these compounds play an important role in cloud formation. According to the measurements, they form ten times more particles than the other two organic substances at the same concentration.

To determine this, Dada and her coauthors used the unique CLOUD chamber at the European Organisation for Nuclear Research, CERN. The chamber is a sealed room in which different atmospheric conditions can be simulated. "At almost 30 cubic metres, this climate chamber is the purest of its kind worldwide," says Dada. "So pure that it allows us to study sesquiterpenes even at the low concentrations recorded in the atmosphere."

This was precisely what the study set out to do. It was designed to simulate biogenic particle formation in the atmosphere. More specifically, researchers were interested in studying pre-industrial times, when there were no anthropogenic sulphur dioxide emissions. This allows the effect of human activities to be determined more clearly and projected into the future. However, anthropogenic sulphur dioxide has long since become ubiquitous in nature. This is another reason why only the CLOUD chamber was viable. It also allows a pre-industrial mixture to be produced under controlled conditions.

Persistent particles lead to more clouds
The experiments revealed that the oxidation of a natural mixture of isoprene, monoterpenes and sesquiterpenes in pure air produces a large variety of organic compounds- so-called ULVOCs (Ultra-Low-Volatility Organic Compounds). As the name suggests, these are not very volatile and therefore form particles very efficiently, which can grow over time to become condensation nuclei. The enormous effect of sesquiterpenes was revealed when the researchers added sesquiterpenes into the chamber with a suspension of only isoprenes and monoterpenes. Even adding just two percent doubled the rate of new particle formation. "This can be explained by the fact that a sesquiterpene molecule consists of 15 carbon atoms, while monoterpenes consist of only ten and isoprenes only five," says Dada.

On the one hand, the study reveals another mean by which vegetation can influence the weather and climate. Above all, however, the research results suggest that sesquiterpenes should be included as a separate factor in future climate models, alongside isopren and monoterpenes, to make their predictions more accurate. This is particularly true in light of the decrease in atmospheric sulphur dioxide concentrations and the simultaneous increase in biogenic emissions as a result of climate stress, meaning that the latter is likely to become increasingly important for our future climate. However, other studies are also needed to further improve cloud formation predictions.

These are already being planned at the Laboratory for Atmospheric Chemistry. "Next," says Imad El Haddad, Group Leader for Atmospheric Molecular Processes, "we and our CLOUD partners want to investigate what exactly happened during industrialisation, when the natural atmosphere became increasingly mixed with anthropogenic gases such as sulphur dioxide, ammonia and other anthropogenic organic compounds."

Research Report:Role of sesquiterpenes in biogenic new particle formation

Related Links
Paul Scherrer Institute
Forestry News - Global and Local News, Science and Application

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
WOOD PILE
Heat, drought, fires threaten Lebanon's northern forests
Kobayat, Lebanon (AFP) Sept 14, 2023
Heatwaves, low rainfall and the threat of wildfires are compounding the woes of people in the forested north of Lebanon, a country where economic pain has long taken prominence over environmental concerns. After a blistering and dry summer, residents of the mountainous Akkar region near the Syrian border are voicing fears about climate change and water scarcity. Farmer Abdullah Hammud, 60, has spent his life in the green hills of Akkar, growing everything from tomatoes to figs, but says environm ... read more

WOOD PILE
Making aviation fuel from biomass

Chevron, partners develop a transportation fuel using animal waste as a feedstock

Illinois research leading to cleaner propane production method

Transforming flies into degradable plastics

WOOD PILE
Google's AI chatbot goes personal tapping into Gmail

Rogue Space Ready for Liftoff

Amazon empowers Alexa with generative AI

Slack CEO is ready to ride AI wave

WOOD PILE
Work starts on key German wind power energy line

No offshore wind in latest UK green energy auction

UK eases effective ban on onshore wind in England

China, US lift wind turbine sales: study

WOOD PILE
UK carmakers hope for delay to post-Brexit tariff

Novel AI system enhances the predictive accuracy of autonomous driving

Tire maker honored for tackling electric car pollution

Taiwan's TSMC to help train German students for semiconductor careers

WOOD PILE
Pixel-by-pixel analysis yields insights into lithium-ion batteries

Fast-tracking fusion energy's arrival with AI and accessibility

French firm nets 2 bn euros for major battery factory

Alumnus' thermal battery helps industry eliminate fossil fuels

WOOD PILE
UK and Japan partnership to develop new technologies for nuclear waste disposal

Toshiba says $14 bn offer to go private set to succeed

Framatome breaks industry record for safe and timely reactor vessel exam at Surry Power Station

Rwanda inks deal to build nuclear reactor

WOOD PILE
Climate targets should not bankrupt British people: UK minister

Biden launches 'climate corps' for green jobs

UK business gives new net zero approach frosty reception

US, China absent from major UN climate meet

WOOD PILE
How trees influence cloud formation

Key Indigenous lands case resumes in Brazil high court

Scientists rediscover small Brazil tree, 185 years on

Two dead as police, illegal miners clash in Venezuelan Amazon

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.