Solar Energy News  
CHIP TECH
Hybrid heterostructures with programmable potentials
by Staff Writers
Cambridge UK (SPX) May 09, 2017


Self-assembled supramolecular structures can be used to tailor electronic and optical properties of graphene, leading to new, hybrid heterostructures with programmable potentials. Credit: P. Samori/Strasbourg

Stacking thin layers of graphene and related materials (GRMs) leads to heterostructure devices with a variety of different electronic and optical properties, which can be tailored by careful design of the stack. Now, researchers from the Graphene Flagship have added a new option for tailoring the electronic properties, using molecular monolayers to create controllable periodic potentials on the surface of graphene.

The research, published in Nature Communications, paves the way for new materials with specially designed electrical, magnetic, piezoelectric and optical functionalities.

Working at Flagship partner institutes the University of Strasbourg (France), CNRS (France), the Max Planck Institute for Polymer Research (Germany) and Dresden Technical University (Germany), and in collaboration with the University of Mons (Belgium) who are not involved in the Graphene Flagship, the researchers used organic molecules that self-assembled into ordered structures on the surface of graphene.

This supramolecular strategy could be applied to other materials to create a new class of hybrid organic-inorganic materials with fully controllable structural and electronic properties.

Programmable Potentials
The researchers used a bottom-up approach to create the hybrid materials, allowing the molecular building blocks to self-assemble into a layer of repeating units that varied in one direction. They found that the molecular layer could significantly affect the electrical properties of graphene, changing the behaviour of graphene field-effect transistor devices.

This modulation could lead to new types of devices which allow current to flow in restricted channels. Paolo Samori (University of Strasbourg) is the Deputy Leader for the Graphene Flagship's Functional Forms and Coatings Work Package, and was involved in the work.

"The mechanical superposition of different layered crystals has been proven to be a route towards the fabrication of heterostructures featuring 2D periodic potentials. Here, we showed that using supramolecular lattices makes it possible to tailor 1D periodic potentials in the resulting organic-inorganic hybrid heterostructures, thereby endowing anisotropic properties to these otherwise isotropic materials," he said.

The molecules consist of a long-chain tail and a reactive head with a small electric field caused by unequal distribution of the electrons in the head. In the self-assembly of the supramolecular lattice, the molecules line up next to each other, with the heads and tails lying in ordered rows (see illustration).

The electric field of the heads influences the underlying graphene, while the regions covered by tails remain unaffected. The presence of the molecules leads to a periodic variation in the electric field in 1D, which can alter the behaviour of electric current in the graphene.

The properties of the molecule determine the specifics of the periodic potential. Using three different types of molecules, the researchers showed that the potentials can be fully controlled, with the size and orientation of the electric field in the head of the molecule determining the strength and type of effect in the graphene. By carefully designing the molecular layer, the electronic properties of the resulting hybrid structure can be fully tailored.

Xinliang Feng (TU Dresden), Leader of the Functional Forms and Coatings Work Package, and co-author of the work, added "One can surely foresee the fabrication of artificial hybrid heterostructures exhibiting novel electrical, magnetic, piezoelectric and optical functionalities by taking full advantage of the infinite degrees of freedom offered by the design of the molecular building blocks."

New Hybrid Materials
This new approach to device design could be extended to other GRMs, enabling more complex multilayer heterostructures with new properties. For example, in semiconductor transition metal dichalcogenides, the periodic potentials could lead to a series of nanoscale junctions with distinct optical properties. "Ultimately, this could pave the way towards systems with unconventional physical and chemical properties for opto-electronics," said Samori.

Vincenzo Palermo (CNR, Italy), Leader of the Graphene Flagship's Composites Work Package, commented "Scientists have always tried hard to tune the electrical properties of graphene. The Graphene Flagship demonstrated, with this and other works, that chemistry can be a powerful tool to create beautiful, self-assembled structures on graphene, modifying its nanoscale properties using light or (electro)chemical stimuli."

This result demonstrates the wide potential of hybrid systems that are yet to be fully explored. Andrea Ferrari (University of Cambridge, UK), is the Science and Technology Officer of the Graphene Flagship and Chair of its Management Panel.

He added "The Graphene Flagship has always been, since its start, about the entire family of graphene, related layered materials and hybrid systems. The latter have not been yet fully investigated, and this work represents an interesting proof of principle, showing how supramolecular chemistry opens another dimension in the already wide space covered by the properties of GRMs."

Research paper

CHIP TECH
Dawn of organic single crystal electronics
Tokyo, Japan (SPX) May 03, 2017
Researchers at the Institute for Molecular Science, National Institutes of Natural Sciences (Japan) have developed a method for high performance doping of organic single crystal. Furthermore, they succeeded in the Hall effect measurement of the crystal - the world's first case. The research has been published in the Advanced Materials. Controlling "holes" and "electrons" responsible for el ... read more

Related Links
Graphene Flagship
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
New breakthrough makes it easier to turn old coffee waste into cleaner biofuels

Enhancing the efficiency of cereal straw for biofuel production

Biomass powering U.S. military base

First EPA-approved outdoor field trial for genetically engineered algae

CHIP TECH
Amazon's new Alexa speaker has a screen too

3-D-printed 'bionic skin' could give robots the sense of touch

Computers learn to understand humans better by modelling them

Your future surgery may use an automated, robotic drill

CHIP TECH
Dutch open 'world's largest offshore' wind farm

Scientists track porpoises to assess impact of offshore wind farms

OX2 will manage a 45 MW wind farm owned by IKEA Group in Lithuania

Building Energy celebrates the beginning of operations and electricity generation of its first wind farm

CHIP TECH
Chinese carmaker Geely to be largest Saxo shareholder

Germany's Bosch sells subsidiary to China's ZMJ

Bike-sharing launched in congested Beirut

Free rides offered by Alphabet's Waymo autonomous cars

CHIP TECH
New model of plasma stability could help researchers predict and avoid disruptions

Can the motion of checking your smartwatch charge it?

NRL breakthrough enables safer alternative to lithium-ion batteries

Super P carbon black for reversible lithium and sodium ion storage

CHIP TECH
Tunnel collapse at US nuclear site raises safety concerns

Plutonium research to aid nuclear cleanup techniques

EU Plans to Hand Over Control of Euratom Nuclear Waste on UK Soil to London

Tunnel collapses at US nuke site, no radiation leak

CHIP TECH
Australia power grid leased to local-foreign consortium

Myanmar recovery linked to development of electrical grid

Poland central to EU energy diversification strategy

U.S. emissions generally lower last year

CHIP TECH
Poland EU row over ancient forest heats up

DR Congo arrests 14 Chinese for wood smuggling

DR Congo arrests 14 Chinese for wood smuggling

Long-term fate of tropical forests may not be as dire as believed









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.