Solar Energy News  
ENERGY TECH
Hydrogen for all seasons
by Staff Writers
Munich, Germany (SPX) Oct 05, 2015


Chemical systems that are capable of generating hydrogen gas by light-activated scission of water molecules (often termed artificial photosynthesis) represent a promising technology for the efficient storage of solar energy.

Chemists from Ludwig-Maximilians-Universitaet (LMU) in Munich have developed novel porous materials called "covalent organic frameworks", which provide a basis for the design of polymeric photocatalysts with tunable physical, chemical and electronic properties.

Chemical systems that are capable of generating hydrogen gas by light-activated scission of water molecules (often termed artificial photosynthesis) represent a promising technology for the efficient storage of solar energy. However, the systems that have been developed so far suffer from various drawbacks, and intensive efforts are underway to discover alternative procedures that are both more practical and efficacious.

Chemists led by Professor Bettina Lotsch, who has dual appointments in the Department of Chemistry at LMU and the Max Planck Institute for Solid State Research in Stuttgart now introduce a new class of porous organic materials that can be used as the basis for molecularly tunable photocatalysts for light-driven production of hydrogen gas. The researchers report their findings in the new issue of the online journal Nature Communications.

Lotsch and her colleagues are interested in the properties and practical applications of so-called covalent organic frameworks. These materials are composed of layers of regular two-dimensional molecular networks synthesized from simple organic precursors, and they exhibit a number of features that facilitate photocatalytic processes. "They form crystalline and porous semiconductors, whose chemical properties can be precisely tuned for a given application," as Bettina Lotsch explains.

They are already under investigation as possible matrices for the storage of gases and for applications in sensor technology, and also have considerable potential in the field of optoelectronics.

More efficient and more economical
In collaboration with the group led by Christian Ochsenfeld, Professor of Theoretical Chemistry at LMU, Lotsch and her team have been exploring the potential of such porous polymers as photocatalysts.

In their latest work, they chose so-called triphenylarenes as the basic subunits of their model matrix. "The great advantage of this class of materials is that the chemical and physical properties of the network can be readily engineered for different applications, simply by altering the structure of the precursors," says Vijay Vyas, a postdoc in Bettina Lotsch's group at the Max Planck Institute for Solid State Research.

"This flexibility allowed us progressively to modulate their ability to produce hydrogen. Their performance parameters in this context are comparable to those of established photocatalysts based on carbon nitride and oxides." The planar layers of the new set of compounds are synthesized from hydrazine and a series of aromatic trialdehydes. In the resulting structure, the trialdehyde subunits are linked together by azine (=N-N=) bridges to form two-dimensional lattices.

Metal-based photocatalysts are often expensive to make and difficult to modify. "But since the properties of COFs can be readily and specifically altered, their performance characteristics can also be manipulated at will," says Frederik Haase, a member of Bettina Lotsch's group. They therefore provide a combination of features which make them ideal as a basis for the development of environmentally friendly and economical photocatalysts.

Bettina Lotsch summarizes the results of the study as follows: "We have now demonstrated, at the molecular level, that the structural, morphological and optoelectronic properties of covalent organic frameworks can be precisely tuned so as to maximize their photocatalytic activity." The advances made by the LMU chemists thus promise to make solar energy even more attractive as a future source of sustainable energy.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Ludwig-Maximilians-Universitat Munchen
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
First optical rectenna converts light to DC current
Atlanta GA (SPX) Oct 01, 2015
Using nanometer-scale components, researchers have demonstrated the first optical rectenna, a device that combines the functions of an antenna and a rectifier diode to convert light directly into DC current. Based on multiwall carbon nanotubes and tiny rectifiers fabricated onto them, the optical rectennas could provide a new technology for photodetectors that would operate without the nee ... read more


ENERGY TECH
Microalgae biomass as feedstock for biofuel, food, feed and more

Barley straw shows potential as transport biofuel raw material

Green biomass entails potential as well as challenges

Bravo to biomass

ENERGY TECH
U.S. Navy orders new robots, servicing

Embedded optical sensors could make robotic hands more dexterous

MIT's egg-clutching robot has soft but steady hands

Aussie woman sends 'robot' to queue for new iPhone

ENERGY TECH
US has fallen behind in offshore wind power

Moventas rolls out breakthrough up-tower planetary repairs for GE fleet

Chinese firm invests in Mexican wind power projects

German wind power output topping 2014 total

ENERGY TECH
Toyota unveils self-driving car

ORNL demonstrates road to supercapacitors for scrap tires

Deer-vehicle collisions increase during breeding season

Oslo moves to ban cars from city centre

ENERGY TECH
Hydrogen for all seasons

NCSEA report maps regulatory, policy path to develop energy storage in NC

McMaster engineers build better energy storage device

Discovery about new battery overturns decades of false assumptions

ENERGY TECH
Poroshenko Ends Cooperation With Russia on Nuclear Plant Construction

International research team finds thriving wildlife populations in Chernobyl

TEPCO Removes Protective Cover Over Crippled Fukushima Reactor

EDF says ball in China's court on UK nuclear plant: FT

ENERGY TECH
Leaders call for carbon pricing worldwide

ADB supports Indonesian energy diversity

US cities ranked on impact of urban heat islands on temps

Brazil's Rousseff pledges 37% cut in greenhouse gas emissions

ENERGY TECH
Broadleaf trees show reduced sensitivity to global warming

Study reveals answers for managing Guam's threatened native trees

Large trees - key climate influencers - die first in drought

NASA/USGS Mission Helps Answer: What Is a Forest









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.