Subscribe free to our newsletters via your
. Solar Energy News .




STELLAR CHEMISTRY
IRIS and Hinode: A Stellar research team
by Staff Writers
Greenbelt MD (SPX) Aug 26, 2015


This is a simulation of a cross-section of a thread of solar material, called a filament, hovering in the sun's atmosphere. The yellow area is the thread itself, where the material is denser, and the black area is the surrounding, less dense material. The characteristic wave motion leads to complex turbulence around the edges of the yellow thread, which heats the surrounding black material. This model was created with the Aterui supercomputer at the Center for Computational Astrophysics at the National Astronomical Observatory of Japan. Image courtesy NAOJ/Patrick Antolin. For a larger version of this image please go here.

Modern telescopes and satellites have helped us measure the blazing hot temperatures of the sun from afar. Mostly the temperatures follow a clear pattern: The sun produces energy by fusing hydrogen in its core, so the layers surrounding the core generally get cooler as you move outwards--with one exception. Two NASA missions have just made a significant step towards understanding why the corona--the outermost, wispy layer of the sun's atmosphere --is hundreds of times hotter than the lower photosphere, which is the sun's visible surface.

In a pair of papers in The Astrophysical Journal, published on August 10, 2015, researchers--led by Joten Okamoto of Nagoya University in Japan and Patrick Antolin of the National Astronomical Observatory of Japan--observed a long-hypothesized mechanism for coronal heating, in which magnetic waves are converted into heat energy. Past papers have suggested that magnetic waves in the sun - Alfvenic waves - have enough energy to heat up the corona. The question has been how that energy is converted to heat.

"For over 30 years scientists hypothesized a mechanism for how these waves heat the plasma," said Antolin. "An essential part of this process is called resonant absorption - and we have now directly observed resonant absorption for the first time."

Resonant absorption is a complicated wave process in which repeated waves add energy to the solar material, a charged gas known as plasma, the same way that a perfectly-timed repeated push on a swing can make it go higher. Resonant absorption has signatures that can be seen in material moving side to side and front to back.

To see the full range of motions, the team used observations from NASA's Interface Region Imaging Spectrograph, or IRIS, and the Japan Aerospace Exploration Agency (JAXA)/NASA's Hinode solar observatory to successfully identify signatures of the process. The researchers then correlated the signatures to material being heated to nearly corona-level temperatures. These observations told researchers that a certain type of plasma wave was being converted into a more turbulent type of motion, leading to lots of friction and electric currents, heating the solar material.

The researchers focused on a solar feature called a filament. Filaments are huge tubes of relatively cool plasma held high up in the corona by magnetic fields. Researchers developed a computer model of how the material inside filament tubes moves, then looked for signatures of these motions with sun-observing satellites.

"Through numerical simulations, we show that the observed characteristic motion matches well what is expected from resonant absorption," said Antolin.

The signatures of these motions appear in three dimensions, making them difficult to observe without the teamwork of several missions. Hinode's Solar Optical Telescope was used to make measurements of motions that appear, from our perspective, to be up-and-down or side-to-side, a perspective that scientists call plane-of-sky. The resonant absorption model relies on the fact that the plasma contained in a filament tube moves in a specific wave motion called an Alfvenic kink wave, caused by magnetic fields. Alfvenic kink waves in filaments can cause motions in the plane-of-sky, so evidence of these waves came from observations by Hinode's extremely high-resolution optical telescope.

More complicated were the line-of-sight observations--line-of-sight means motions in the third dimension, toward and away from us. The resonant absorption process can convert the Alfvenic kink wave into another Alfvenic wave motion. To see this conversion process we need to simultaneously observe motions in the plane-of-the-sky and the line-of-sight direction. This is where IRIS comes in. IRIS takes a special type of data called spectra. For each image taken by IRIS's ultraviolet telescope, it also creates a spectrum, which breaks down the light from the image into different wavelengths.

Analyzing separate wavelengths can provide scientists with additional details such as whether the material is moving toward or away from the viewer. Much like a siren moving toward you sounds different from one moving away, light waves can become stretched or compressed if their source is moving toward or away from an observer. This slight change in wavelength is known as the Doppler effect. Scientists combined their knowledge of the Doppler effect with the expected emissions from a stationary filament to deduce how the filaments were moving in the line-of-sight.

"It's the combination of high-resolution observations in all three regimes--time, spatial, and spectral--that enabled us to see these previously unresolved phenomena," said Adrian Daw, mission scientist for IRIS at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

Using both the plane-of-sky observations from Hinode and line-of-sight observations from IRIS, researchers discovered the characteristic wave motions consistent with their model of this possible coronal heating mechanism. What's more, they also observed material heating up in conjunction with the wave motions, further confirming that this process is related to heating in the solar atmosphere.

"We would see the filament thread disappear from the filter that is sensitive to cool plasma and reappear in a filter for hotter plasma," said Bart De Pontieu, science lead for IRIS at Lockheed Martin Solar and Astrophysics Lab in Palo Alto, California.

In addition, comparison of the two wave motions, showed a time delay, known as a phase difference. The researchers' model predicted this phase difference, thus providing some of the strongest evidence that the team was correctly understanding their observations.

Though resonant absorption plays a key role in the complete process, it does not directly cause heating. The researchers' simulation showed that the transformed wave motions lead to turbulence around the edges of the filament tubes, which heats the surrounding plasma.

It seems that resonant absorption is an excellent candidate for the role of an energy transport mechanism--though these observations were taken in the transition region rather than the corona, researchers believe that this mechanism could be common in the corona as well.

"Now the work starts to study if this mechanism also plays a role in heating plasma to coronal temperatures," said De Pontieu.

With the launch of over a dozen missions in the past twenty years, our understanding of the sun and how it interacts with Earth and the solar system is better than at any time in human history. Heliophysics System Observatory missions are working together to unravel the coronal heating problem and the sun's other remaining mysteries.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Goddard Space Flight Center
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





STELLAR CHEMISTRY
Mystery of exploding stars yields to astrophysicists
Los Angeles CA (SPX) Aug 20, 2015
A longstanding mystery about the tiny stars that let loose powerful explosions known as Type Ia supernovae might finally be solved. For decades, astronomers have debated whether one white dwarf star, or two, is necessary for firing up this particular kind of supernova. The answer is not merely academic. Understanding the nitty-gritty physics and diversity of Type Ia supernovae will help il ... read more


STELLAR CHEMISTRY
Biomethane out of waste for more than 2000 households

WELTEC Biomethane Plant in France Launches Feed-in

Grape waste could make competitive biofuel

BESC creates microbe that bolsters isobutanol production

STELLAR CHEMISTRY
Smooth robot movements reduce energy consumption by up to 40 percent

Navy orders HazMat robots

A brain-computer interface for controlling an exoskeleton

Controlling the uncontrollable

STELLAR CHEMISTRY
European Funding brings ZephIR 300 wind lidar to Malta

New technology could reduce wind energy costs

Study finds price of wind energy in US at an all-time low

U.S. claims No. 2 position in global wind power

STELLAR CHEMISTRY
Madrid electrical bicycle share system takes off

Toyota says factory lines in Tianjin shut until weekend

Taxi-booking app GrabTaxi raises $350 million in fresh funding

UAW blasts GM plan to sell Chinese-made cars in US

STELLAR CHEMISTRY
Making hydrogen fuel from water and visible light highly efficient

New easily fabricated, flexible and wearable white-light LED

New technology can expand LED lighting

Novel nanostructures for efficient long-range energy transport

STELLAR CHEMISTRY
Nuke dump at Lake Huronis draws mass anger across border

Sisi May Sign Deal on 2 NPP Units Construction in Egypt During Russia Visit

IAEA to help Africa cooperate in nuclear power development

Greenpeace demands Swiss shut world's oldest nuclear plant

STELLAR CHEMISTRY
RWE shakes up British subsidiary

Pakistan power sector target of ADB funding

Credit scheme backfired, hiking greenhouse gases: study

China's carbon emissions less than previously thought?

STELLAR CHEMISTRY
Study: Tropical forests to disappear faster than expected

Boreal forests threatened by climate change

Regulatory, certification slows down use of genetically altered trees

Special issue: Forest health 2015




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.