Solar Energy News  
SPACE TRAVEL
ISS tests organisms, materials in space
by Melissa Gaskill for ISS News
Houston TX (SPX) Aug 05, 2022

File illustration of the EXPOSE-R2 external ISS module

Space may look empty, but it contains extreme temperatures, high levels of background radiation, micrometeoroids, and the unfiltered glare of the Sun. In addition, materials and equipment on the outside of the International Space Station are exposed to atomic oxygen (AO) and other charged particles as it orbits the Earth at the very edge of our atmosphere. Only the hardiest materials, equipment, and organisms can withstand this harsh environment, and scientists conducting research on the orbiting laboratory have identified some of them for a variety of potential uses.

"There are ways to test the various components of space exposure individually on the ground, but the only way to get the combined effect of all of them at the same time is on orbit," says Mark Shumbera of Aegis Aerospace, which owns and operates the MISSE Flight Facility (MISSE-FF), a platform for space exposure studies on station. "That's important because combined effects can be very different from individual ones."

Missions launch about every six months to MISSE-FF, which is sponsored by the ISS National Lab. Experiments began when the platform was installed in 2018 and will continue for the life of the space station, Shumbera says. A previous MISSE facility operating from 2001 until 2016 hosted the first station-based exposure experiments.

Some of these missions help researchers understand how new technologies react to the space environment. "Before using a technology on an operational satellite or vehicle, you want some confidence that it will perform the way you think it will in the space environment," he says.

MISSE-FF has high-definition cameras that take periodic photos of all items on its exposure decks and sensors to record environmental conditions such as temperature, radiation, and UV and AO exposure. All test articles are brought back to the ground for postflight analysis as well.

NASA scientists have flown multiple missions on the MISSE-FF to analyze the effects of atomic oxygen and radiation on hundreds of samples and devices.

MISSE-9, for example, assessed how polymers, composites, and coatings handled exposure to space. For this and other MISSE missions, Kim de Groh, senior materials research engineer at NASA's Glenn Research Center in Cleveland, tests two primary environmental degradation effects. The first is how quickly a material erodes due to AO interaction. She measures loss of mass in space-exposed materials and uses that information to compute AO erosion yield values. These values help spacecraft designers determine whether specific materials are suitable for use and how thick those materials need to be.

Materials used as spacecraft insulation can become brittle in space due to radiation and temperature cycling on orbit. This embrittlement can create cracks and cause problems such as a spacecraft component overheating. De Groh also tests the durability of different materials to find those that resist becoming brittle.

"The ideal situation is to actually expose samples to space, to experience all the harsh environment conditions at the same time," de Groh says.

The EXPOSE-R-2 facility from ESA (European Space Agency) is another platform that offers scientists the opportunity to test samples in space. ESA investigations that have used the facility include BOSS and BIOMEX, which exposed biofilms, biomolecules, and extremophiles to space and Mars-like conditions. Extremophiles are organisms that can live in conditions intolerable or even lethal for most forms of life.

Increasing autonomy is critical to future missions that travel farther from Earth and cannot rely on resupply missions. Microorganisms that are tolerant of extreme conditions have potential uses in life support systems for such missions, according to Daniela Billi, a professor in the biology department of the University of Rome Tor Vergata and an investigator for BOSS and BIOMEX. For example, cyanobacteria can use available resources to fix carbon (convert atmospheric carbon dioxide into carbohydrates) and produce oxygen.

During exposure on the space station, dried Chroococcidiopsis cells received an ionizing radiation dose equivalent to a trip to Mars. Their response suggests that the bacteria could be transported to the planet and rehydrated on demand. The dried cells also were mixed with a simulant of Martian regolith or dust and received a UV dose corresponding to about 4 hours of exposure on the Martian surface.

"The aim of this study was to verify whether this cyanobacterium could repair DNA damage accumulated during travel to Mars and exposure to unattenuated Mars conditions," says Billi.

Recently published results suggest that they can: DNA sequencing of cells rehydrated after exposure showed no increase in mutation rate compared to controls grown under Earth conditions. This result increases the potential for using this organism to employ resources available on site to support human settlements.

Another investigation using the EXPOSE-R-2 facility found signs of life in melanin-containing fungi after 16 months of exposure to space. Fungal melanin pigment seems to play a role in cellular resistance to extreme conditions, including radiation, and may have potential for use as radiation protection on future deep space missions. In the experiment, a thin layer of one strain of melanized fungus decreased radiation levels by almost 2% and potentially as much as 5%.

In addition to fungi, researchers used the ESA platform to expose the resting stages of some 40 species of multicellular animals and plants to space for the EXPOSE-R IBMP investigation. Results showed that many of these organisms remained viable and even completed life cycles and reproduction for several generations, suggesting future voyages to other planets could take along terrestrial life forms for use in ecological life-support systems and for creating artificial ecosystems.

As humans explore farther into space and stay there longer, tests performed on the space station's exposure platforms help ensure the materials and systems they take along are up for the trip.

Research Report:Absence of increased genomic variants in the cyanobacterium Chroococcidiopsis exposed to Mars-like conditions outside the space station


Related Links
Space Station Research
Space Tourism, Space Transport and Space Exploration News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SPACE TRAVEL
When Russia leaves, what's next for the International Space Station?
Washington (AFP) July 29, 2022
Russia's announcement this week that it will leave the International Space Station "after 2024" raises critical questions about the outpost's future viability. Here's what you should know about Moscow's decision, and the potential effect on one of the last remaining examples of US-Russia cooperation. - Why does Russia want to leave? - Russia's invasion of Ukraine has pitted it against the West, eviscerating its relationship with the United States and leading to broad sanctions, including a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE TRAVEL
Turning fish waste into quality carbon-based nanomaterial

Brazilian scientists reveal method of converting methane gas into liquid methanol

MSU researchers create method for breaking down plant materials for earth-friendly energy

Solar-powered chemistry uses CO2 and H2O to make feedstock for fuels, chemicals

SPACE TRAVEL
Researchers create the first artificial vision system for both land and water

Danish AI-driven political party eyes parliament

University of Sydney and Reach Robotics to collaborate on space robotics

NASA Space Robotics dive into deep-sea work

SPACE TRAVEL
Modern wind turbines can more than compensate for decline in global wind resource

End-of-life plan needed for tens of thousands of wind turbine blades

Engineers develop cybersecurity tools to protect solar, wind power on the grid

1500 sensors for the rotor blades of the future

SPACE TRAVEL
Toyota upgrades forecast even as Q1 net profit slumps

Has the SMART Tire Company created the ultimate bicycle tire

California regulator accuses Tesla of false advertising

BMW profits drop as China lockdowns knock production

SPACE TRAVEL
Surrey's prototype battery only needs seconds of sunlight to keep smart wearables charged

A flexible device that harvests thermal energy to power wearable electronics

DNA inspired superconductor could transform technology

An affordable and sustainable alternative to lithium-ion batteries

SPACE TRAVEL
Framatome to deliver neutron instrumentation system solution at South Carolina nuclear plant

Russia planning to connect nuclear plant to Crimea: Ukrainian operator

'Volatile' situation at Russian-held Ukrainian nuclear plant: IAEA

UTA engineering researcher leads effort to help develop fast modular nuclear reactor

SPACE TRAVEL
Australia backs law to speed carbon emission cuts

Spanish PM calls on nation to go tie-less

Biden to announce new action on climate in major speech

Solar Energy - It's Time to Harness the Sun's Energy

SPACE TRAVEL
Togo battles to save forests as poverty threatens reserves

Colombian deforestation policy 'failure' a headache for new government

Greek firefighters battle sixth day to save national park

Sea level rise is killing trees along the Atlantic coast, creating ghost forests









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.