"Previous research has primarily focused on the role of hydrogen bonding in shaping the photophysical properties of hybrid perovskites," explained Guanjun Xiao, the study's lead researcher. "However, the lack of investigation into the interaction mechanisms of non-hydrogen-bonded hybrid perovskites has hindered precise material design for targeted applications."
By employing high-pressure techniques, Xiao and his team studied the specific interaction sites within the non-hydrogen-bonded hybrid perovskite (DBU)PbBr3. Their findings highlighted that the spatial arrangement of Br-N atomic pairs plays a crucial role in influencing organic-inorganic interactions.
The research was published on September 16 in *Research*, a Science Partner Journal launched by the American Association for the Advancement of Science (AAAS) in collaboration with the China Association for Science and Technology (CAST). Xiao is a professor at the State Key Laboratory of Superhard Materials at Jilin University.
The study involved synthesizing microrod (DBU)PbBr3 using the hot injection method and systematically analyzing its optical and structural properties under high pressure. The researchers observed that the material's emission exhibited enhancement and a blue shift under pressure, with photoluminescence quantum yield reaching 86.6% at 5.0 GPa. Additionally, photoluminescence lifetime measurements indicated a suppression of non-radiative recombination under pressure.
A significant discovery was the presence of an abnormally enhanced Raman mode in the pressure range where emission enhancement occurred. "This suggests a potential connection between the two phenomena," Xiao noted. Further analysis identified the Raman mode as being linked to organic-inorganic interactions, likely associated with N-Br bonding.
To deepen their understanding, the team conducted structural evolution studies under pressure, supported by first-principles calculations. They confirmed that the primary determinants of interaction strength were the spatial arrangement of N and Br atoms, including their distance and dihedral angle. A notable isostructural phase transition at 5.5 GPa altered the primary compression direction, initially strengthening organic-inorganic interactions before leading to a subsequent decrease-trends that aligned with observed optical property changes.
"These findings bridge a significant knowledge gap in understanding organic-inorganic interactions in non-hydrogen-bonded hybrid halides, offering valuable design principles for materials with specific optical performance targets," Xiao stated.
Research Report:Identifying Organic-Inorganic Interaction Sites Toward Emission Enhancement in Non-Hydrogen-Bonded Hybrid Perovskite via Pressure Engineering
Related Links
State Key Laboratory of Superhard Materials, College of Physics, Jilin University
All About Solar Energy at SolarDaily.com
Subscribe Free To Our Daily Newsletters |
Subscribe Free To Our Daily Newsletters |