Solar Energy News  
SOLAR SCIENCE
Improved representation of solar variability in climate models
by Staff Writers
Kiel, Germany (SPX) Jul 07, 2017


The yellow shows old reconstruction, the black shows new reconstruction and the grey shaded shows observations. Credit GEOMAR.

How much do solar cycle variations influence our climate system? Could the rising Earth temperatures due to anthropogenic effects partly be compensated by a reduction of solar forcing in the future?

These questions have been in the focus of climate research for a long time. In order to answer these questions as precisely as possible, it is required to know the fluctuations of solar forcing on the timescale of the 11-year sunspot cycle as precisely as possible in order to use these as input parameters for climate model simulations.

An international research team led by the GEOMAR Helmholtz Centre for Ocean Research Kiel and the Instituto de Astrofisica de Andalucia (CSIC) in Granada (Spain) have now published a new dataset, which will be used as a basis for all upcoming model intercomparison studies and in particular the next climate assessment report of the Intergovernmental Panel on Climate Change (IPCC).

"For solar irradiance, we have essentially combined two data sets, one from our American colleagues and one from the Max Planck Institute for Solar System Research in Gottingen", explains the first author Prof. Dr. Katja Matthes from GEOMAR.

"In this new data set, the variability in the shortwave part of the solar spectrum, the so-called UV range, is stronger than before. This leads to a warming of the stratosphere and increased ozone production at the maximum of the Sun's activity", Matthes continues.

The scientists expect that this new solar forcing will lead to more pronounced signals in the stratosphere at heights between 15 and 50 kilometres which might influence surface climate through complicated interaction mechanisms. Further innovations of the data set are a new reference value for the so-called "solar constant", the total solar irradiance, i.e. the irradiance averaged over all wavelengths. The new estimate is with 1361 watts per square meter lower than before. In addition the effects of energetic particles are considered.

The new data set will be used in the coming years as a reference for the sixth cycle of an internationally coordinated intercomparison project of coupled ocean-atmosphere models. The so-called CMIP (Coupled Model Intercomparison Project) experiments are already performed since several decades. They are an important quality check for climate models and are the basis for IPCC's climate assessment reports.

What do scientists expect from the new data set? "In our future scenario for CMIP6, we provide a more sophisticated estimate of the future development of solar activity after 2015", explains Dr.

Bernd Funke, from CSIC, co-author of the study. "By 2070 a decrease of the Sun's mean activity to a smaller solar minimum is expected. This counteracts the anthropogenic global warming signal, but will not have a significant influence on the development of global average surface temperatures", Dr. Funke continues. However, regional effects should not negligible. In addition, for the first time a quantification of solar irradiance and particle effects will be possible.

The new data set is the outcome of a large, interdisciplinary team effort, from solar physicists and energetic particle experts to climate modellers. This work has been carried out as part of an international project of the World Climate Research Programme. Under the leadership of Katja Matthes and Bernd Funke, the worldwide expertise on this topic was combined to create the best possible assessment of past, present and future solar variability.

"The new data set will help to further improve our understanding of natural decadal climate variability and to distinguish natural more clearly from anthropogenic processes", Prof. Matthes concludes.

Research paper

SOLAR SCIENCE
Scientists uncover origins of the Sun's swirling spicules
Greenbelt MD (SPX) Jul 06, 2017
At any given moment, as many as 10 million wild jets of solar material burst from the sun's surface. They erupt as fast as 60 miles per second, and can reach lengths of 6,000 miles before collapsing. These are spicules, and despite their grass-like abundance, scientists didn't understand how they form. Now, for the first time, a computer simulation - so detailed it took a full year to run - show ... read more

Related Links
Helmholtz Centre for Ocean Research Kiel
Solar Science News at SpaceDaily


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
Cutting the cost of ethanol, other biofuels and gasoline

Solving a sweet problem for renewable biofuels and chemicals

A whole-genome sequenced rice mutant resource for the study of biofuel feedstocks

New biofuel technology significantly cuts production time

SOLAR SCIENCE
Government Agencies Turn to Private Sector for Help Adopting Intelligent Technologies

Three European firms join in robot ship project

Human pose estimation for care robots using deep learning

Soft and stretchy fabric-based sensors for wearable robots

SOLAR SCIENCE
Owls' wings could hold the key to beating wind turbine noise

Algeria seen as African leader for renewable energy

Thrive Renewables delivers mezzanine funded wind farms in Scotland

It's a breeze: How to harness the power of the wind

SOLAR SCIENCE
Self-driving cars may soon be able to make moral and ethical decisions as humans do

German 'dieselgate' investigators target Porsche employees

Forget defrosting your car at a glacial pace

France 'to end sales of petrol, diesel vehicles by 2040'

SOLAR SCIENCE
First battery-free cellphone makes calls by harvesting ambient power

PPPL researchers demonstrate first hot plasma edge in a fusion facility

Conductive electrodes are key to fast-charging batteries

Iron secrets behind superconductors unlocked

SOLAR SCIENCE
France could close a third of nuclear reactors: minister

Mitsubishi, Assystem take stakes in France's nuclear reactors firm

Britain must leave EU nuclear body: Verhofstadt

Sixth MOX nuclear shipment leaves France for Japan

SOLAR SCIENCE
Google's 'moonshot' factory spins off geothermal unit

Fighting global warming and climate change requires a broad energy portfolio

Low-carbon trajectory is the only option, European leaders say

Divestment streak continues for British energy company Centrica

SOLAR SCIENCE
Ancient fungi could help Canada's future northern forests

UNESCO urges Poland to stop logging ancient forest

Green activists, rangers face off over Poland's ancient forest

Slow-growing ponderosas survive mountain pine beetle outbreaks









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.