Solar Energy News  
CHIP TECH
Improving the photoluminescence efficiency of 2-D semiconductors
by Staff Writers
Singapore (SPX) May 11, 2016


This is a schematic of the light emission from a single crystal monolayer of tungsten diselenide flake on a gold substrate. Part of the triangular flake rests on the patterned region of the substrate consisting of sub-20 nm wide trenches. Image courtesy Andrew T. S. Wee. For a larger version of this image please go here.

A team led by researchers from the National University of Singapore (NUS) has developed a method to enhance the photoluminescence efficiency of tungsten diselenide, a two-dimensional semiconductor, paving the way for the application of such semiconductors in advanced optoelectronic and photonic devices.

Tungsten diselenide is a single-molecule-thick semiconductor that is part of an emerging class of materials called transition metal dichalcogenides (TMDCs), which have the ability to convert light to electricity and vice versa, making them strong potential candidates for optoelectronic devices such as thin film solar cells, photodetectors flexible logic circuits and sensors. However, its atomically thin structure reduces its absorption and photoluminescence properties, thereby limiting its practical applications.

By incorporating monolayers of tungsten diselenide onto gold substrates with nanosized trenches, the research team, led by Professor Andrew Wee of the Department of Physics at the NUS Faculty of Science, successfully enhanced the nanomaterial's photoluminescence by up to 20,000-fold. This technological breakthrough creates new opportunities of applying tungsten diselenide as a novel semiconductor material for advanced applications.

Ms Wang Zhuo, a PhD candidate from the NUS Graduate School for Integrative Sciences and Engineering (NGS) and first author of the paper, explained, "This is the first work to demonstrate the use of gold plasmonic nanostructures to improve the photoluminescence of tungsten diselenide, and we have managed to achieve an unprecedented enhancement of the light absorption and emission efficiency of this nanomaterial."

Elaborating on the significance of the novel method, Prof Wee said, "The key to this work is the design of the gold plasmonic nanoarray templates. In our system, the resonances can be tuned to be matched with the pump laser wavelength by varying the pitch of the structures. This is critical for plasmon coupling with light to achieve optimal field confinement."

The novel research was first published online in the journal Nature Communications on 6 May 2016.

The next step
The novel method developed by the NUS team, in collaboration with researchers from the Singapore University of Technology and Design and Imperial College, opens up a new platform for investigating novel electrical and optical properties in the hybrid system of gold with tungsten diselenide.

Moving forward, the research team will further investigate the effectiveness of the lateral gold plasmon in enhancing the second harmonic generation and electroluminescence of TMDCs. They will also investigate these effects in other two dimensional transition metal dichalcogenides with different band gaps, as they are expected to show different interaction mechanisms.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
National University of Singapore
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Effects of spectral quality, intensity of LEDs
Almeria, Spain (SPX) May 11, 2016
In horticultural operations, light-emitting diode (LED) lamps are becoming recognized as an important advance in artificial lighting. Among other benefits, LED lighting systems can offer durability, long operating lifetimes, and high energy efficiency. Researchers published a study in the March 2016 issue of HortScience that shows that continuous spectrum LEDs made specifically for horticultural ... read more


CHIP TECH
Berkeley Lab scientists brew jet fuel in 1-pot recipe

UNT researchers discover potential new paths for plant-based bioproducts

Improving utilization of ammonia and carbon dioxide in microalgal cultivation

Airbus Defence and Space signs contract to build Biomass

CHIP TECH
Bee model will help development of aerial robotics

This 5-fingered robot hand learns to get a grip on its own

Rover technology for space now being used on Earth

Robot built to aid astronauts nearly ready for Mars

CHIP TECH
DNV GL-led project gives green light for wind-powered oil recovery

Report: U.S. wind energy sector booming

El Hierro, the Spanish island vying for 100% clean energy

USGS finds cranes isolated from wind farms

CHIP TECH
France's Peugeot and Chinese partner to develop electric cars

Strolling and selfies as Paris' Champs-Elysees goes car-free

Self-driving cars in a fast lane: Fiat Chrysler chief

Volvo Cars gets junk rating as bond offer hits the road

CHIP TECH
Speedy ion conduction clears road for advanced energy devices

Researchers integrate diamond/boron layers for high-power devices

Clues on the path to a new lithium battery technology

Anomalous sinking of spheres in apparently fixed powder beds discovered

CHIP TECH
Ancient glass-glued walls studied for nuke waste solutions

India's Mainland to Host Next Hub of Nuclear Plants

German power giants to pay into public fund to finance nuclear phase-out

BWXT tapped for nuclear reactor components, fuel

CHIP TECH
Changing the world, 1 fridge at a time

Could off-grid electricity systems accelerate energy access

EU court overturns carbon market free quotas

Global leaders agree to set price on carbon pollution

CHIP TECH
US must step-up forest pest prevention

Californian sudden oak death epidemic 'unstoppable'

Amazon rainforest responds quickly to extreme climate events

Old-growth forests may provide buffer against rising temperatures









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.