Solar Energy News  
TIME AND SPACE
In Einstein's footsteps and beyond
by Leah Burrows
Boston MA (SPX) Apr 28, 2022

An illustration of a near-zero index metamaterial shows that when light travels through, it moves in a constant phase. (Credit: Second Bay Studios/Harvard SEAS)

In physics, as in life, it's always good to look at things from different perspectives.

Since the beginning of quantum physics, how light moves and interacts with matter around it has mostly been described and understood mathematically through the lens of its energy. In 1900, Max Planck used energy to explain how light is emitted by heated objects, a seminal study in the foundation of quantum mechanics. In 1905, Albert Einstein used energy when he introduced the concept of photon.

But light has another, equally important quality known as momentum. And, as it turns out, when you take momentum away, light starts behaving in really interesting ways.

An international team of physicists led by Michael Lobet, a research associate at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Eric Mazur, the Balkanski Professor of Physics and Applied Physics at SEAS, are re-examining the foundations of quantum physics from the perspective of momentum and exploring what happens when the momentum of light is reduced to zero.

Any object with mass and velocity has momentum - from atoms to bullets to asteroids - and momentum can be transferred from one object to another. A gun recoils when a bullet is fired because the momentum of the bullet is transferred to the gun. At the microscopic scale, an atom recoils when it emits light because of the acquired momentum of the photon. Atomic recoil, first described by Einstein when he was writing the quantum theory of radiation, is a fundamental phenomenon which governs light emission.

But a century after Planck and Einstein, a new class of metamaterials is raising questions regarding these fundamental phenomena. These metamaterials have a refractive index close to zero, meaning that when light travels through them, it doesn't travel like a wave in phases of crests and troughs. Instead, the wave is stretched out to infinity, creating a constant phase. When that happens, many of the typical processes of quantum mechanics disappear, including atomic recoil.

Why? It all goes back to momentum. In these so-called near-zero index materials, the wave momentum of light becomes zero and when the wave momentum is zero, odd things happen.

"Fundamental radiative processes are inhibited in three dimensional near-zero index materials," says Lobet, who is currently a lecturer at the University of Namur in Belgium. "We realized that the momentum recoil of an atom is forbidden in near-zero index materials and that no momentum transfer is allowed between the electromagnetic field and the atom."

If breaking one of Einstein's rules wasn't enough, the researchers also broke perhaps the most well-known experiment in quantum physics - Young's double-slit experiment. This experiment is used in classrooms across the globe to demonstrate the particle-wave duality in quantum physics - showing that light can display characteristics of both waves and particles.

In a typical material, light passing through two slits produces two coherent sources of waves that interfere to form a bright spot in the center of the screen with a pattern of light and dark fringes on either side, known as diffraction fringes.

"When we modeled and numerically computed Young's double-slit experiment, it turned out that the diffraction fringes vanished when the refractive index was lowered," said co-author Larissa Vertchenko, of the Technical University of Denmark.

"As it can be seen, this work interrogates fundamental laws of quantum mechanics and probes the limits of wave-corpuscle duality," said co-author Inigo Liberal, of the Public University of Navarre in Pamplona, Spain.

While some fundamental processes are inhibited in near-zero refractive index materials, others are enhanced. Take another famous quantum phenomenon - Heisenberg's uncertainty principle, more accurately known in physics as the Heisenberg inequality. This principle states that you cannot know both the position and speed of a particle with perfect accuracy and the more you know about one, the less you know about the other. But, in near-zero index materials, you know with 100% certainty that the momentum of a particle is zero, which means you have absolutely no idea where in the material the particle is at any given moment.

"This material would make a really poor microscope, but it does enable to cloak objects quite perfectly," Lobet said. "In some way, objects become invisible."

"These new theoretical results shed new light on near-zero refractive index photonics from a momentum perspective," said Mazur. "It provides insights in the understanding of light-matter interactions in systems with a low- refraction index, which can be useful for lasing and quantum optics applications."

The research could also shed light on other applications, including quantum computing, light sources that emit a single photon at a time, the lossless propagation of light through a waveguide and more.

The team next aims to revisit other foundational quantum experiments in these materials from a momentum perspective. After all, even though Einstein didn't predict near-zero refractive index materials, he did stress the importance of momentum. In his seminal 1916 paper on fundamental radiative processes, Einstein insisted that, from a theoretical point of view, energy and momentum "should be considered on a completely equal footing since energy and momentum are linked in the closest possible way."

"As physicists, it's a dream to follow in the footsteps of giants like Einstein and push their ideas further," said Lobet. "We hope that we can provide a new tool that physicists can use and a new perspective, which might help us understand these fundamental processes and develop new applications."

The research is published in Nature Light Science and Applications.

Research Report:Momentum considerations inside near-zero index materials


Related Links
Harvard John A. Paulson School of Engineering and Applied Sciences
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
CERN restarts Large Hadron Collider in quest to unlock origins of the universe
Washington DC (UPI) Apr 22, 2021
Scientists at the European Council for Nuclear Research restarted the Large Hadron Collider on Friday, more than three years after the world's most powerful particle accelerator was paused for maintenance and upgrades. The first beams of protons began spinning in opposite directions, marking the start of what is expected to be four years of data gathering in the search for dark matter, according to CERN. The collider works by smashing particles together to allow scientists to study what' ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Using human energy to heat buildings will pay off

Dung power: India taps new energy cash cow

Biden's biofuel: Cheaper at the pump, but high environmental cost?

Fuel from waste wood

TIME AND SPACE
Ground-based rover's touch shared with astronaut in space

UAE vows 'responsible' artificial intelligence rollout

An easier way to teach robots new skills

Molecular robots work cooperatively in swarms

TIME AND SPACE
Transport drones for offshore wind farms

Lack of marshaling ports hindering offshore wind industry

Favourable breezes boost Spain's wind power sector

Brazil to hold first offshore wind tender by October: official

TIME AND SPACE
Tesla recalls second batch of cars in China on safety concerns

German prosecutors conduct raids in Suzuki diesel probe

GM announces it will make electric Corvette

Ferrari to recall more than 2,200 cars in China over brake risk

TIME AND SPACE
Using excess heat to improve electrolyzers and fuel cells

Machine learning, harnessed to extreme computing, aids fusion energy development

A catalyst for the development of carbon-neutral technology of the radiation accelerator

Electric, low-emissions alternatives to carbon-intensive industrial processes

TIME AND SPACE
Purdue and Duke Energy to explore potential for clean, nuclear power source for campus

UN watchdog 'concerned' about Ukraine nuclear plant access

Finnish nuclear reactor OL3 delayed again to September

Switzerland demands curbs on Russian UN nuclear official

TIME AND SPACE
Canada stumbling in transition to low-carbon economy

EU needs to recycle more to hit green energy goals: report

Paris climate targets feasible if nations keep vows

Lots of low- and no-cost ways to halt global warming

TIME AND SPACE
Parisians up in arms over plan to fell trees near Eiffel Tower

10 football pitches of pristine rainforest lost per minute in 2021

DRCongo suspends 'illegal' forestry concessions

Planet Partners with Canadian universities to research boreal forests









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.