Solar Energy News  
WATER WORLD
Increased carbon dioxide enhances plankton growth
by Staff Writers
East Boothbay ME (SPX) Nov 30, 2015


45 years of data show coccolothiphores growth is enhanced with increasing ocean acidification. Image courtesy Ocean Ecology Laboratory, Ocean Biology Processing Group NASA Goddard Space Center. For a larger version of this image please go here.

Coccolithophores - tiny calcifying plants that are part of the foundation of the marine food web - have been increasing in relative abundance in the North Atlantic over the last 45 years, as carbon input into ocean waters has increased. Their relative abundance has increased 10 times, or by an order of magnitude, during this sampling period. This finding was diametrically opposed to what scientists had expected since coccolithophores make their plates out of calcium carbonate, which is becoming more difficult as the ocean becomes more acidic and pH is reduced.

These findings were reported in the November 26th edition of Science and based on analysis of nearly a half century of data collected by the long-running Sir Alister Hardy Foundation (SAHFOS) Continuous Plankton Recorder sampling program.

"The results show both the power of long-term time-series of ocean observations for deciphering how marine microbial communities are responding to climate change and offer evidence that the ocean garden is changing," said Dr. William Balch, senior research scientist at Bigelow Laboratory for Ocean Sciences and a co-author of the paper.

"We never expected to see the relative abundance of coccolithophores to increase 10 times in the North Atlantic over barely half a century. If anything, we expected that these sensitive calcifying algae would have decreased in the face of increasing ocean acidification (associated with increasing carbon dioxide entering the ocean from the burning of fossil-fuels). Instead, we see how these carbon-limited organisms appear to be using the extra carbon from CO2 to increase their relative abundance by an order of magnitude.

"This provides one example on how marine communities across an entire ocean basin are responding to increasing carbon dioxide levels. Such real-life examples of the impact of increasing CO2 on marine food webs are important to point out as the world comes together in Paris next week at the United Nations Conference on Climate Change," Balch added.

"Something strange is happening here, and it's happening much more quickly than we thought it should," said Anand Gnanadesikan, associate professor in the Morton K. Blaustein Department of Earth and Planetary Sciences at Johns Hopkins and one of the study's five authors.

Gnanadesikan said the Science report certainly is good news for creatures that eat coccolithophores, but it's not clear what those are. "What is worrisome," he said, "is that our result points out how little we know about how complex ecosystems function." The result highlights the possibility of rapid ecosystem change, suggesting that prevalent models of how these systems respond to climate change may be too conservative, he said.

Coccolithophores are often referred to as "canaries in the coal mine." Some of the key coccolithophore species can outcompete other classes of phytoplankton in warmer, more stratified and nutrient-poor waters (such as one might see in a warming ocean).

Until this data proved otherwise, scientists thought that they would have more difficulties forming their calcite plates in a more acidic ocean. These results show that coccolithophores are able to use the higher concentration of carbon derived from CO2, combined with warmer temperatures, to increase their growth rate.

When the percentage of coccolithophores in the community goes up, the relative abundance of other groups will go down. The authors found that at local scales, the relative abundance of another important algal class, diatoms, had decreased over the 45 years of sampling.

The team's analysis was of data taken from the North Atlantic Ocean and North Sea since the mid-1960s compiled by the Continuous Plankton Recorder survey. The CPR survey was launched by British marine biologist Sir Alister Hardy in the early 1930s. Today it is carried on by the Sir Alister Hardy Foundation for Ocean Sciences and is conducted by commercial ships trailing mechanical plankton-gathering gear through the water as they sail their regular routes. Dr. Willie Wilson, formerly a senior research scientist at Bigelow Laboratory, is now director of SAHFOS.

"In the geological record, coccolithophores have been typically more abundant during Earth's warm interglacial and high CO2 periods. The results presented here are consistent with this and may portend, like the "canary in the coal mine," where we are headed climatologically," said Balch.

The lead author of the paper is Sara Rivero-Calle, a PhD candidate at John Hopkins University. In addition to Balch, her co-authors are Anand Gnanadesikan of John Hopkins, Carlos E. Del Castillo of NASA, and Seth D. Guikema of the University of Michigan.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Bigelow Laboratory for Ocean Sciences
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WATER WORLD
CO2 keeps even small fry invasive carp at bay
Urbana IL (SPX) Nov 27, 2015
University of Illinois researcher Cory Suski has already shown that bubbling high concentrations of carbon dioxide (CO2) into water is a deterrent to invasive Asian carp adults. The gas makes them feel 'woozy' and they choose to swim away. His recent research shows that fish the size of an eyelash also experience negative consequences following CO2 exposure. "We conducted carbon dioxide ch ... read more


WATER WORLD
First biomethane injected into the grid at a farm in Den Bommel

New step towards producing cheap and efficient renewable fuels

EU clears clean British power plant

Algae could be a new green power source

WATER WORLD
High-tech Barbie stokes privacy fears

A row-bot that loves dirty water

China dreams of electric sheep at robot conference

NASA selects Northeastern for humanoid robot research

WATER WORLD
German power giant RWE to spin off renewables business

Big UK cities vow to run on green energy by 2050

SeaPlanner New Features Launched on Nordsee One Offshore Wind Farm

Moventas introduces breakthrough Extra Life technologies for wind industry

WATER WORLD
Volkswagen India to recall 323,700 cars over emissions scandal

French carmakers top European list of low CO2 emitters

Audi to spend 50 mn euros to repair diesel cars in US

German prosecutors say probing VW staff for tax evasion

WATER WORLD
Energy from a fossil fuel without carbon dioxide

HKUST scientists explain the theory behind Ising superconductivity

Price Declines Expected to Broaden the Energy Storage Market

Alberta to phase out coal

WATER WORLD
Foreign groups seek to build Poland's first nuclear plant

Belgium extends lives of ageing nuclear reactors

Too Early to talk about status of Russia-Turkey joint projects

Nuclear agreement between Seoul, Washington comes into effect

WATER WORLD
Decarbonizing tourism: Would you pay US$11 for a carbon-free holiday?

Rich countries must not impose end to 'conventional energy': India PM

Commonwealth sets up $1 billion green finance facility

Fossil fuel divestment drive gathers momentum

WATER WORLD
Tallest trees could die of thirst in rainforest droughts

'Traditional authority' linked to rates of deforestation in Africa

Amazon deforestation leaps 16 percent in 2015

Top civil servants probed over hardwood traffic in Gabon









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.