Subscribe free to our newsletters via your
. Solar Energy News .




TECH SPACE
Inspired by Nature, Researchers Create Tougher Metal Materials
by Staff Writers
Raleigh NC (SPX) Jul 11, 2014


This image illustrates the gradient structure concept. Image courtesy Yuntian Zhu.

Drawing inspiration from the structure of bones and bamboo, researchers have found that by gradually changing the internal structure of metals they can make stronger, tougher materials that can be customized for a wide variety of applications - from body armor to automobile parts.

"If you looked at metal under a microscope you'd see that it is composed of millions of closely-packed grains," says Yuntian Zhu, a professor of materials science and engineering at NC State and senior author of two papers on the new work. "The size and disposition of those grains affect the metal's physical characteristics."

"Having small grains on the surface makes the metal harder, but also makes it less ductile - meaning it can't be stretched very far without breaking," says Xiaolei Wu, a professor of materials science at the Chinese Academy of Sciences' Institute of Mechanics, and lead author of the two papers. "But if we gradually increase the size of the grains lower down in the material, we can make the metal more ductile.

You see similar variation in the size and distribution of structures in a cross-section of bone or a bamboo stalk. In short, the gradual interface of the large and small grains makes the overall material stronger and more ductile, which is a combination of characteristics that is unattainable in conventional materials.

"We call this a 'gradient structure,' and you can use this technique to customize a metal's characteristics," Wu adds. Wu and Zhu collaborated on research that tested the gradient structure concept in a variety of metals, including copper, iron, nickel and stainless steel. The technique improved the metal's properties in all of them.

The research team also tested the new approach in interstitial free (IF) steel, which is used in some industrial applications.

If conventional IF steel is made strong enough to withstand 450 megapascals (MPa) of stress, it has very low ductility - the steel can only be stretched to less than 5 percent of its length without breaking. That makes it unsafe. Low ductility means a material is susceptible to catastrophic failure, such as suddenly snapping in half. Highly ductile materials can stretch, meaning they're more likely to give people time to respond to a problem before total failure.

By comparison, the researchers created an IF steel with a gradient structure; it was strong enough to handle 500 MPa and ductile enough to stretch to 20 percent of its length before failing.

The researchers are also interested in using the gradient structure approach to make materials more resistant to corrosion, wear and fatigue.

"We think this is an exciting new area for materials research because it has a host of applications and it can be easily and inexpensively incorporated into industrial processes," Wu says.

"Synergetic Strengthening by Gradient Structure" Authors: X.L. Wu, P. Jiang, L. Chen, J.F. Zhang and F.P. Yuan, Chinese Academy of Sciences; Y.T. Zhu, North Carolina State University

.


Related Links
NC State University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Carbon-fiber epoxy honeycombs mimic performance of balsa wood
Boston MA (SPX) Jul 11, 2014
In wind farms across North America and Europe, sleek turbines equipped with state-of-the-art technology convert wind energy into electric power. But tucked inside the blades of these feats of modern engineering is a decidedly low-tech core material: balsa wood. Like other manufactured products that use sandwich panel construction to achieve a combination of light weight and strength, turbi ... read more


TECH SPACE
Microbe sniffer could point the way to next-gen bio-refining

The JBEI GT Collection: A New Resource for Advanced Biofuels Research

A Win-Win-Win Solution for Biofuel, Climate, and Biodiversity

Water-cleanup catalysts tackle biomass upgrading

TECH SPACE
Collisions with Robots - without Risk of Injury

Power consumption of robot joints could be 40 percent less

How do ants get around? Ultra-sensitive machines measure their every step...

Collaborative learning -- for robots

TECH SPACE
EON and GE Partner To Build Texas Wind Farm

U.S., German companies to operate Texas Panhandle wind farm

Great progress on wind installations, Germany's RWE says

OX2 acquires Polish wind power company, Greenfield Wind

TECH SPACE
Colorado State University to receive four really smart cars this summer

Volkswagen to build two new plants in China

Google Android software spreading to cars, watches, TV

Toyota names price for new fuel cell car

TECH SPACE
Britain wins carbon capture funding from EU

Insights from nature for more efficient water splitting

Hollow-fiber membranes could cut separation costs, energy use

Study helps unlock mystery of high-temp superconductors

TECH SPACE
Japan city launches legal bid to halt reactor build

Westinghouse Extends New-plant Market with Specialized Seismic Option

Single Optical Fiber Combines 100s Of Sensors To Monitor Harsh Environments

Improved method for isotope enrichment would better secure supplies

TECH SPACE
Upton wants policies in place to exploit energy leadership

Blow for Australia government as carbon tax repeal fails

Green planning needed to maintain city buildings

GE taps China CEO to lead Alstom merger

TECH SPACE
Maine officials say white pine fungus spreading

Incentives as effective as penalties for slowing Amazon deforestation

New study shows Indonesia's disastrous deforestation

Australian greens hail Tasmanian Wilderness decision




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.