Solar Energy News  
STELLAR CHEMISTRY
Integrated photonics meets electron microscopy
by Staff Writers
Lausanne, Switzerland (SPX) Jan 01, 2022

The experimental setup, showing a transmission electron microscope and silicon nitride microresonator used to demonstrate the electron-photon interaction.

The transmission electron microscope (TEM) can image molecular structures at the atomic scale by using electrons instead of light, and has revolutionized materials science and structural biology. The past decade has seen a lot of interest in combining electron microscopy with optical excitations, trying, for example, to control and manipulate the electron beam by light. But a major challenge has been the rather weak interaction of propagating electrons with photons.

In a new study, researchers have successfully demonstrated extremely efficient electron beam modulation using integrated photonic microresonators. The study was led by Professor Tobias J. Kippenberg at EPFL and by Professor Claus Ropers at the Max Planck Institute for Biophysical Chemistry and the University of Gottingen, and is published in Nature.

The two laboratories formed an unconventional collaboration, joining the usually unconnected fields of electron microscopy and integrated photonics. Photonic integrated circuits can guide light on a chip with ultra-low low losses, and enhance optical fields using micro-ring resonators. In the experiments conducted by Ropers' group, an electron beam was steered through the optical near field of a photonic circuit, to allow the electrons to interact with the enhanced light.

The researchers then probed the interaction by measuring the energy of electrons that had absorbed or emitted tens to hundreds of photon energies. The photonic chips were engineered by Kippenberg's group, built in such a way that the speed of light in the micro-ring resonators exactly matched the speed of the electrons, drastically increasing the electron-photon interaction.

The technique enables a strong modulation of the electron beam, with only a few milli-Watts from a continuous wave laser - a power level generated by a common laser pointer. The approach constitutes a dramatic simplification and efficiency increase in the optical control of electron beams, which can be seamlessly implemented in a regular transmission electron microscope, and could make the scheme much more widely applicable.

"Integrated photonics circuits based on low-loss silicon nitride have made tremendous progress and are intensively driving the progress of many emerging technologies and fundamental science such as LiDAR, telecommunication, and quantum computing, and now prove to be a new ingredient for electron beam manipulation," says Kippenberg.

"Interfacing electron microscopy with photonics has the potential to uniquely bridge atomic scale imaging with coherent spectroscopy," adds Ropers. "For the future, we expect this to yield an unprecedented understanding and control of microscopic optical excitations."

The researchers plan to further extend their collaboration in the direction of new forms of quantum optics and attosecond metrology for free electrons.

Research Report: "Integrated photonics enables continuous-beam electron phase modulation"


Related Links
Swiss Federal Institute of Technology Lausanne
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
A quantum view of 'combs' of light
Stanford CA (SPX) Dec 17, 2021
Unlike the jumble of frequencies produced by the light that surrounds us in daily life, each frequency of light in a specialized light source known as a "soliton" frequency comb oscillates in unison, generating solitary pulses with consistent timing. Each "tooth" of the comb is a different color of light, spaced so precisely that this system is used to measure all manner of phenomena and characteristics. Miniaturized versions of these combs - called microcombs - that are currently in development h ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
From the oilfield to the lab: How a special microbe turns oil into gases

Estonia's wood pellet industry stokes controversy

Study shows how waste can be converted into materials for advanced industries

A system that combines solar energy and a chemical reactor to get more from biomass has been designed

STELLAR CHEMISTRY
Food prep robot 'Alfred' joins kitchen staff at Travis Air Force Base

NUS engineers bring a soft touch to commercial robotics

Giving bug-like bots a boost

Consciousness in humans, animals and artificial intelligence

STELLAR CHEMISTRY
Share of German energy from renewables to fall in 2021

DLR starts cooperation with ENERCON

RWE ups renewables investment as end to coal looms

Green hydrogen from expanded wind power in China

STELLAR CHEMISTRY
EVs accounted for two-thirds of new cars in Norway in 2021

China's troubled ride-hailing giant Didi reports $4.7 bn Q3 loss

Tesla recalls 675,000 cars in US, China

'Opt for cycling': French car ads must back alternatives

STELLAR CHEMISTRY
Helping to make nuclear fusion a reality

Bringing the Sun into the lab

Portuguese lithium, fuel of Europe's electric vehicle revolution?

MIT engineers produce the world's longest flexible fiber battery

STELLAR CHEMISTRY
Germany to close nuclear reactors despite energy crisis

Belgium will close all nuclear reactors by 2025

Finnish nuclear reactor starts up 12 years behind schedule

EU eyes nuclear, gas as 'green' on sustainable energy list

STELLAR CHEMISTRY
Will Beijing's 'green Olympics' really be green?

Human cost of China's green energy rush ahead of Winter Olympics

Wildlife concerns blunt Germany's green power efforts

Biden calls for carbon neutral federal government by 2050

STELLAR CHEMISTRY
Loggers threaten Papua New Guinea's unique forest creatures

Canada announces challenge to US lumber tariffs

European stores pull products linked to Brazil deforestation

Soils in old-growth treetops can store more carbon than soils under our feet









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.