Subscribe free to our newsletters via your
. Solar Energy News .




CHIP TECH
Integrated sensors handle extreme conditions
by Jacob Greco for Case Western Reserve University
Cleveland OH (SPX) Jun 08, 2012


Integrating the amplifier and sensor into one discrete package and placing the package directly where data is being collected improves signal strength, clarity and produces more reliable information. The researchers believe this will ultimately result in more accurate monitoring and safer control over a jet engine, nuclear reactor or other high-temperature operations.

A team of Case Western Reserve University engineers has designed and fabricated integrated amplifier circuits that operate under extreme temperatures - up to 600 degrees Celsius - a feat that was previously impossible. The silicon carbide amplifiers have applications in both aerospace and energy industries. The devices can take the heat of collecting data inside of nuclear reactors and rocket engines, for example.

Dr. Steven L. Garverick, a professor of electrical engineering and computer science, describes the team's work in a paper he presented at the 2012 IEEE EnergyTech conference, held at Case Western Reserve. The paper is coauthored by Ph.D. candidate Chia-Wei Soong and Mehran Mehregany, director of the Case School of Engineering, San Diego program.

These integrated circuits are constructed on a wide-band-gap semiconductor. According to Garverick, "Most semi-conductors are made out of silicon, but silicon will not function above 300 degrees Celsius, and there are some important applications above that range."

His team's solution is to use silicon carbide. At high temperatures, the material begins to act as a semiconductor.

Engineers at NASA Glenn Research Center, in Cleveland, pioneered techniques used to manufacture these circuits. Team members at Case Western Reserve have used them to fabricate complete circuits by depositing three distinct silicon carbide layers on top of silicon carbide wafers, which altogether measure one-tenth of the thickness of a human hair.

These circuits are designed to replace the "dumb" sensors currently used in high-temperature applications. The simple sensors can't take the heat and instead require long wires that connect them to the high-temperature zone.

These circuits can experience considerable interference, which makes signals unclear and difficult to decipher. The physical enclosures and wiring used in the manufacture and installation of non-integrated sensors introduces additional error.

Integrating the amplifier and sensor into one discrete package and placing the package directly where data is being collected improves signal strength, clarity and produces more reliable information.

The researchers believe this will ultimately result in more accurate monitoring and safer control over a jet engine, nuclear reactor or other high-temperature operations.

The team has built a suite of circuits ranging from simple low-accuracy versions to more complex models that return far better data. Garverick said the team will continue developing the technology and believes that commercial production is about five to ten years away.

.


Related Links
Case Western Reserve University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Unique approach to materials allows temperature-stable circuits
Albuquerque NM (SPX) Jun 08, 2012
Sandia National Laboratories researcher Steve Dai jokes that his approach to creating materials whose properties won't degenerate during temperature swings is a lot like cooking - mixing ingredients and fusing them together in an oven. Sandia has developed a unique materials approach to multilayered, ceramic-based, 3-D microelectronics circuits, such as those used in cell phones. The appro ... read more


CHIP TECH
Biofuel prospects improve with higher oil prices

Scientists identify mechanism for regulating plant oil production

UGA scientists map and sequence genome of switchgrass relative foxtail millet

Energy-dense biofuel from cellulose close to being economical

CHIP TECH
Robotic jellyfish could one day patrol oceans, clean oil spills, and detect pollutants

Graphene-control cutting using an atomic force microscope-based nanorobot

Rescue robot tested at So. Calif. beach

DLR presents innovations in robotics at AUTOMATICA 2012

CHIP TECH
Change in air as Africa's biggest wind farm set for Kenya

Wind Powering An Island Economy

China Leads Growth in Global Wind Power Capacity

US slaps duties on Chinese wind towers

CHIP TECH
China auto sales rise 16% in May

Chinese and Japanese investors bid for Saab

Volkswagen targets China in group shakeup

Japan's vehicle output soars 174% in April

CHIP TECH
Fusion power said one step closer

New small solid oxide fuel cell reaches record efficiency

Obama backs Philippines on sea freedom

Pakistan defies U.S. on Iran gas pipeline

CHIP TECH
Japan PM renews plea for nuclear restart

Russia supports 'peaceful' nuclear drive in Iran

Germany will coordinate with neighbours on nuclear exit

China to pursue new nuclear plants?

CHIP TECH
Nuclear and coal-fired electrical plants vulnerable to climate change

American Electric Power Pulls Billion Dollar Big Sandy Request

US and European energy supplies vulnerable to climate change

Short-Term Politics Stifles Pentagon's Green Energy Ambitions

CHIP TECH
Trees grow in Poland through free send-a-seedling drive

Highway through Amazon worsens effects of climate change, provides mixed economic gains

Standing trees better than burning ones for carbon neutrality

'Missing' Borneo radio host says he is in hiding




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement