Solar Energy News  
TECH SPACE
International engineering team develop self-powered mobile polymers
by Staff Writers
Pittsburgh PA (SPX) Nov 14, 2016


Exposed to ultraviolet-visible light, a 15um thick azo-LCN samples experiences 'photomotility.' The locomotion of these materials is a direct conversion of the input light energy. Image courtesy Jeong Jae Wie, Inha University/AFRL. Watch a video on the research here.

One of the impediments to developing miniaturized, "squishy" robots is the need for an internal power source that overcomes the power-to-weight ratio for efficient movement. An international group involving Inha University, University of Pittsburgh and the Air Force Research Laboratory has built upon their previous research and identified new materials that directly convert ultraviolet light into motion without the need for electronics or other traditional methods.

The group includes M. Ravi Shankar, co-author and professor of industrial engineering at Pitt's Swanson School of Engineering. Lead author is Jeong Jae Wie, assistant professor of polymer science and engineering at Inha University, South Korea.

The experiments were conducted at the Air Force Research Laboratory's (AFRL)Materials and Manufacturing Directorate at Wright-Patterson Air Force Base, Ohio, under the direction of Timothy J. White.

Other investigations have proposed the use of ambient energy resources such as magnetic fields, acoustics, heat and other temperature variations to avoid adding structures to induce locomotion.

However, Dr. Shankar explains that light is more appealing because of its speed, temporal control and the ability to effectively target the mechanical response. For the material, the group zeroed in on monolithic polymer films prepared from a form of liquid crystalline polymer.

"Our initial research indicated that these flexible polymers could be triggered to move by different forms of light," Dr. Shankar explained. "However, a robot or similar device isn't effective unless you can tightly control its motions. Thanks to the work of Dr. White and his team at AFRL, we were able to demonstrate directional control, as well as climbing motions."

According to Dr. Wie, the "photomotility" of these specific polymers is the result of their spontaneous formation into spirals when exposed to UV light. Controlling the exposure enables a corresponding motion without the use of external power sources attached directly to the polymer itself.

"Complex robotic designs result in additional weight in the form of batteries, limb-like structures or wheels, which are incompatible with the notion of a soft or squishy robot," Dr. Wie said. "In our design, the material itself is the machine, without the need for any additional moving parts or mechanisms that would increase the weight and thereby limit motility and effectiveness."

In addition to simple forward movement, Dr. White and the collaborative team were able to make the polymers climb a glass slide at a 15-degree angle. While the flat polymer strips are small - approximately 15mm long and 1.25mm wide - they can move at several millimeters per second propelled by light. The movement can be perpetual, as long as the material remains illuminated.

"The ability for these flexible polymers to move when exposed to light opens up a new ground game in the quest for soft robots," Dr. Shankar said. "By eliminating the additional mass of batteries, moving parts and other cumbersome devices, we can potentially create a robot that would be beneficial where excess weight and size is a negative, such as in space exploration or other extreme environments."

The research, "Photomotility of Polymers," was published in the journal Nature Communications.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Pittsburgh
Space Technology News - Applications and Research






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Exotic property of salty solutions discovered
Potsdam, Germany (SPX) Nov 14, 2016
Water and aqueous solutions can behave strangely under pressure. Experiments carried out at the GFZ German Research Centre for Geosciences using Raman spectroscopy and a diamond anvil cell showed that magnesium sulfate dissolved in water was separated less than expected in magnesium and sulfate ions above a pressure of 0.2 Gigapascal, which equals 2,000 times the normal air pressure. Moreover, i ... read more


TECH SPACE
Bioelectronics at the speed of life

NREL finds bacterium that uses both CO2 and cellulose to make biofuels

State partnerships can promote increased bio-energy production, reduce emissions

Turning biofuel waste into wealth in a single step

TECH SPACE
Scientists come up with light-driven motors to power nanorobots of the future

Crowd workers help robot keep conversation fresh

Artificial-intelligence system surfs web to improve its performance

Chemists develop world's first light-seeking synthetic Nanorobot

TECH SPACE
Microsoft Corp. taps deeper into wind power

Interior set to rule on future of BLM's Renewable Energy Program

Alberta pushing hard on renewable energy pedal

Cuomo announces major progress in offshore wind development

TECH SPACE
VW reaches 3.0-liter diesel agreement with EPA: report

Samsung to buy US auto parts supplier Harman for $8 bn

China auto sales growth falls back in October: group

VW's Audi hit with fresh emissions cheating lawsuit

TECH SPACE
First observations of tongue deformation of plasma

Battery cars a better choice for reducing emissions than fuel cells

Bottlebrush polymers make dielectric elastomers viable for use in devices

PPPL physicists build diagnostic that measures plasma velocity in real time

TECH SPACE
Time to tackle the UK's plutonium mountain

Vietnam to scrap planned nuclear plants: state media

Japan, India sign controversial civil nuclear deal

French, Finns divided over nuclear dispute ruling

TECH SPACE
Study: LED lights draw fewer insects

Shifting focus leaves mixed bag for German utility RWE

Deeper carbon cuts needed to avoid climate tragedy: UN

New program makes energy-harvesting computers more reliable

TECH SPACE
Global boreal forests differ but not immune to climate change

Mangrove protection key to survival for Senegalese community

Morocco's oases fight back creeping desert sands

Database captures most extensive urban tree sizes, growth rates across United States









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.