Solar Energy News  
TIME AND SPACE
Invisible helium atoms provide exquisitely sensitive test of fundamental theory
by Staff Writers
Canberra, Australia (SPX) Apr 08, 2022

stock illustration only

Physicists at the Australian National University have developed the most sensitive method ever for measuring the potential energy of an atom (within a hundredth of a decillionth of a joule - or 10-35 joule), and used it to validate one of the most tested theories in physics - quantum electrodynamics (QED).

The research, published this week in Science relies on finding the colour of laser light where a helium atom is invisible, and is an independent corroboration of previous methods used to test QED, which have involved measuring transitions from one atomic energy state to another.

"This invisibility is only for a specific atom and a specific colour of light - so it couldn't be used to make an invisibility cloak that Harry Potter would use to investigate dark corners at Hogwarts," said lead author, Bryce Henson, a PhD student at ANU Research School of Physics.

"But we were able to use to investigate some dark corners of QED theory."

"We were hoping to catch QED out, because there have been some previous discrepancies between theory and experiments, but it passed with a pretty good mark."

Quantum Electrodynamics, or QED, was developed in the late 1940s and describes how light and matter interact, incorporating both quantum mechanics and Einstein's special theory of relativity in a way that has remained successful for nearly eighty years.

However, hints that QED theory needed some improvement came from discrepancies in measurements of the size of the proton, which were mostly resolved in 2019.

Around this time ANU PhD Scholar Bryce Henson noticed small oscillations in a very sensitive experiment he was conducting on an ultracold cloud of atoms known as a Bose-Einstein condensate.

He measured the frequency of the oscillations with record precision, finding that interactions between the atoms and the laser light changed the frequency, as the laser colour was varied.

He realised this effect could be harnessed to very accurately determining the precise colour at which the atoms did not interact at all with the laser and the oscillation remained unchanged - in other words effectively becoming invisible.

With the combination of an extremely high-resolution laser and atoms cooled to 80 billionths of a degree above absolute zero (80 nanokelvin) the team achieved a sensitivity in their energy measurements that was 5 orders of magnitude less than energy of the atoms, around 10- 35 joules, or a temperature difference of about 10-13 of a degree kelvin.

"That's so small that I can't think of any phenomenon to compare it to - it's so far off the end of the scale," Mr Henson said.

With these measurements the team were able to deduce very precise values for the invisibility colour of helium. To compare their results with theoretical prediction for QED, they turned to Professor Li-Yan Tang from the Chinese Academy of the Sciences in Wuhan and Professor Gordon Drake from the University of Windsor in Canada.

Previous calculations using QED had less uncertainty than the experiments, but with the new experimental technique improving the accuracy by a factor of 20, the theoreticians had to rise to the challenge and improve their calculations.

In this quest they were more than successful - improving their uncertainty to a mere 1/40th of the latest experimental uncertainty, and singling out the QED contribution to the atom's invisibility frequency which was 30 times larger than the experiment's uncertainty. The theoretical value was only slightly lower than the experimental value by 1.7 times the experimental uncertainty.

Leader of the international collaboration, Professor Ken Baldwin from the ANU Research School of Physics, said that improvements to the experiment might help resolve the discrepancy, but would also hone an extraordinary tool that could illuminate QED and other theories.

"New tools for precision measurements often drive big changes in theoretical understanding down the track," Professor Baldwin said.

Research Report: "Measurement of a helium tune-out frequency: an independent test of quantum electrodynamics"


Related Links
Australian National University
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Pinpointing the sound of failure
College Station TX (SPX) Mar 31, 2022
Finding the specific sound a rock makes when it cracks and breaks seems impossible when surrounded by other subsurface noises. But Texas A and M University researcher Dr. Siddharth Misra, the Ted H. Smith, Jr. '75 and Max R. Vordenbaum '73 DVG Associate Professor in the Harold Vance Department of Petroleum Engineering, discovered a way to hear and validate that sound in a project funded by the Basic Energy Sciences program of the Department of Energy (DOE). "The DOE calls sounds of specific events ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Fuel from waste wood

Breaking down plastic into its constituent parts

Could we make cars out of petroleum residue?

Conversion process turns pollution into cash

TIME AND SPACE
Does this artificial intelligence think like a human?

Teleoperation steps in when an autonomous vehicle does not know what to do

Solving the challenges of robotic pizza-making

DARPA Completes Underminer Program

TIME AND SPACE
Favourable breezes boost Spain's wind power sector

Brazil to hold first offshore wind tender by October: official

Bionic wing flaps improve wind energy efficiency

India to build Sri Lanka wind farms after China pushed aside

TIME AND SPACE
Tesla China exports only 60 cars in March as Covid hits auto sector

Tesla recalls nearly 128,000 cars in China due to defect

Interurban Vehicle - Green and comfortable travel even on long journeys

Uber to integrate its network with New York yellow cabs

TIME AND SPACE
Freeze-thaw battery is adept at preserving its energy

Novel use of iron-laced carbon nanofibers yields high-performance energy storage

Nuclear fusion hit a milestone thanks to better reactor walls

The material that could save industries heat

TIME AND SPACE
Toshiba pauses spin-off plan, weighs going private

Hungary gets first delivery of Russia nuclear fuel since war

In 'project of the century', Swiss seek to bury radioactive waste

Safely storing Canada's used nuclear fuel for millennia

TIME AND SPACE
Lots of low- and no-cost ways to halt global warming

Compact, green and car-free. Can city living beat climate change?

Govts, businesses 'lying' on climate efforts: UN chief

Mexico, US talks fail to end energy reform frictions

TIME AND SPACE
US trees may provide over $100 billion dollars in savings via environmental benefits

Record 1st-quarter deforestation in Brazilian Amazon

NASA releases breakthrough forest biomass-carbon product

How deforestation is triggering an irreversible transition in amazon forests?









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.