Solar Energy News  
STELLAR CHEMISTRY
Is Dark Matter "Fuzzy"
by Staff Writers
Boston MA (SPX) May 03, 2017


A composite of optical and x-ray images of various of galaxy clusters. Detailed images are available here

Astronomers have used data from NASA's Chandra X-ray Observatory to study the properties of dark matter, the mysterious, invisible substance that makes up a majority of matter in the universe. The study, which involves 13 galaxy clusters, explores the possibility that dark matter may be more "fuzzy" than "cold," perhaps even adding to the complexity surrounding this cosmic conundrum.

For several decades, astronomers have known about dark matter. Although it cannot be observed directly, dark matter does interact via gravity with normal, radiating matter (that is, anything made up of protons, neutrons, and electrons bundled into atoms).

Capitalizing on this interaction, astronomers have studied the effects of dark matter using a variety of techniques, including observations of the motion of stars in galaxies, the motion of galaxies in galaxy clusters, and the distribution of X-ray emitting hot gas in galaxy clusters. Dark matter has also left an imprint on the radiation left over from the Big Bang 13.8 billion years ago.

However, astronomers have been struggling for decades to understand the detailed properties of dark matter. In other words, they would like to know how dark matter behaves in all environments, and, ultimately, what it is made of.

The most popular model assumes that dark matter is a particle more massive than a proton that is "cold," meaning that it moves at speeds much smaller than the speed of light. This model has been successful at explaining the structure of the universe on very large scales, much bigger than galaxies, but it has problems with explaining how matter is distributed on the smaller scales of galaxies.

For example, the cold dark matter model predicts that the density of dark matter in the center of galaxies is much higher than in surrounding regions close to the center. Because normal matter is attracted to the dark matter, it also should have a strong peak in density at the center of galaxies.

However, astronomers observe that the density of both dark and normal matter in the center of galaxies is much more evenly spread out. Another issue with the cold dark matter model is that it predicts a much higher number of small galaxies orbiting around galaxies like the Milky Way than astronomers actually see.

To address these problems with the cold dark matter model, astronomers have come up alternative models where dark matter has very different properties. One such model takes advantage of the principle in quantum mechanics that each subatomic particle has a wave associated with it.

If the dark matter particle has an extremely small mass, about ten thousand trillion trillion times smaller than an electron's mass, its corresponding wavelength will be about 3,000 light-years. This distance from one peak of the wave to another is about one eighth of the distance between the Earth and the center of the Milky Way. By contrast, the longest wavelength of light, a radio wave, is only a few miles long.

Waves from different particles on these large scales can overlap and interfere with each other like waves on a pond, acting like a quantum system on galactic rather than atomic scales.

The large wavelength of the particles' wave means that the density of dark matter in the center of galaxies cannot be strongly peaked. Therefore to an observer outside a galaxy these particles would appear fuzzy if they could be directly detected, so this model has been called "fuzzy dark matter." Because the normal matter is attracted to the dark matter it will also be spread out over large scales. This would naturally explain the lack of a strong peak in the density of matter in the center of galaxies.

This simple model has been successful at explaining the amount and location of dark matter in small galaxies. For larger galaxies, a more complicated model of fuzzy dark matter has been needed. In this model, massive concentrations of dark matter can lead to multiple quantum states (called "excited states"), in which the dark matter particles can have different amounts of energy, similar to an atom with electrons in higher energy orbits. These excited states change how the density of dark matter varies with distance away from the center of the galaxy cluster.

In a new study, a team of scientists used Chandra observations of the hot gas in 13 galaxy clusters to see if the fuzzy dark matter model works at larger scales than that of galaxies. They used the Chandra data to estimate both the amount of dark matter in each cluster and how the density of this matter varies with distance away from the center of the galaxy cluster.

The graphic shows four of the 13 galaxies clusters used in the study. The clusters are, starting at the top left and going clockwise, Abell 262, Abell 383, Abell 1413, and Abell 2390. In each of these images, X-ray data from Chandra are pink, while optical data are red, green, and blue.

As with the studies of galaxies, the simplest model of fuzzy dark matter - where all particles have the lowest possible energy - did not agree with the data. However, they found that the model where the particles had different amounts of energy - the "excited states - did give good agreement with the data. In fact, the fuzzy dark matter model may match the observations of these 13 galaxy clusters just as well or even better than a model based on cold dark matter.

This result shows that the fuzzy dark matter model may be a viable alternative to cold dark matter, but further work is needed to test this possibility. An important effect of the excited states is to give ripples, or oscillations, in the density of dark matter as a function of distance away from the center of the cluster.

This would produce ripples in the density of normal matter. The expected magnitude of these ripples is less than the current uncertainties in the data. A more detailed study is needed to test this prediction of the model.

"Scalar Field Dark Matter in Clusters of Galaxies," Tula Bernal, Victor H. Robles and Tonatiuh Matos, 2017, to appear in Monthly Notices of the Royal Astronomical Society

STELLAR CHEMISTRY
Simulated Galaxies Provide Fresh Evidence of Dark Matter
Durham, UK (SPX) Apr 24, 2017
Observations of the Coma cluster carried out by Swiss astronomer Fritz Zwicky in 1933 implied that the system's total gravitating mass was far larger than that which could be detected from starlight or emission from intra-cluster gas. He proposed "dunkle Materie," or dark matter, as a binding agent for the cluster. As years passed, new and more refined observations of clusters and of indiv ... read more

Related Links
Chandra X-Ray Center In Cambridge
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Turning chicken poop and weeds into biofuel

Nickel: A greener route to fatty acids

Scientists develop efficient multifunctional catalyst for CO2 hydrogenation to gasoline

Fast, low energy, and continuous biofuel extraction from microalgae

STELLAR CHEMISTRY
Your future surgery may use an automated, robotic drill

Computers learn to understand humans better by modelling them

Synthetic two-sided gecko's foot could enable underwater robotics

The rise of automated art

STELLAR CHEMISTRY
U.S. wind power accelerating at near-record pace

CEE Group acquires wind farm with a capacity of 27.6 megawatts in Brandenburg

Norwegian company envisions wind energy role for oil production

Oklahoma to end tax credits for wind energy

STELLAR CHEMISTRY
Tesla revenues surge as it ramps for Model 3 launch

Bike-sharing launched in congested Beirut

Free rides offered by Alphabet's Waymo autonomous cars

Rideshare rivals Gett, Juno join forces

STELLAR CHEMISTRY
Thin layers of water hold promise for the energy storage of the future

Bright future for self-charging batteries

Super P carbon black for reversible lithium and sodium ion storage

Revolutionary method reveals impact of short circuits on battery safety

STELLAR CHEMISTRY
Ukraine clings to nuclear power despite Chernobyl trauma

Court deals setback to South Africa's nuclear ambitions

Andra continues Areva contract to operate its Aube Surface Disposal Facility

The critical importance of Predictive Power when building NPPs

STELLAR CHEMISTRY
U.S. emissions generally lower last year

World Bank urges more investment for developing global electricity

US states begin legal action on Trump energy delay

Program to be axed saves energy in LA buildings

STELLAR CHEMISTRY
New look at satellite data questions scale of China's afforestation success

Long-term fate of tropical forests may not be as dire as believed

Deforestation from a tree's perspective at the TED conference

Scientists examine impact of high-severity fires on conifer forests









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.