Solar Energy News  
TIME AND SPACE
JILA atomic clock mimics long-sought synthetic magnetic state
by Staff Writers
Boulder CO (SPX) Dec 29, 2016


JILA physicists used a strontium lattice atomic clock to simulate magnetic properties long sought in solid materials. The atoms are confined in an optical lattice, shown as an array of disk-shaped traps set at shallow depths. A laser (yellow wave) probes the atoms to couple the atoms' spins and motions. The two atomic spin states (red and blue), which are also the clock. Image courtesy Steven Burrows and Ye Group/JILA. For a larger version of this image please go here.

Using their advanced atomic clock to mimic other desirable quantum systems, JILA physicists have caused atoms in a gas to behave as if they possess unusual magnetic properties long sought in harder-to-study solid materials. Representing a novel "off-label" use for atomic clocks, the research could lead to the creation of new materials for applications such as "spintronic" devices and quantum computers.

JILA's record-setting atomic clock, in which strontium atoms are trapped in a laser grid known as an optical lattice, turns out to be an excellent model for the magnetic behavior of crystalline solids at the atomic scale. Such models are valuable for studying the counterintuitive rules of quantum mechanics.

To create "synthetic" magnetic fields, the JILA team locked together two properties of the clock atoms to create a quantum phenomenon known as spin-orbit coupling. The long lifetime and precision control of the clock atoms enabled researchers to overcome a common problem in other gas-based spin-orbit coupling experiments, namely heating and loss of atoms due to spontaneous changes in atomic states, which interferes with the effects researchers are trying to achieve.

The best-known type of spin-orbit coupling refers to an electron inside a single atom, where an electron's spin (the direction of its momentum, like a tiny arrow pointing up or down) is locked to its orbit around the nucleus to give rise to a rich internal atomic structure.

In the JILA work, spin-orbit coupling locks an atom's spin, which is like a tiny internal bar magnet, with the atom's external motion through the optical lattice. The JILA team precisely manipulated the spin and motion of thousands of strontium atoms in the clock, measured the resulting synthetic magnetic field, and observed key signatures of spin-orbit coupling such as changes in atom motion rippling through the lattice based on their spin.

The experiments are described in a Nature paper published online Dec. 21, 2016. JILA is jointly operated by the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder.

"Spin-orbit coupling is useful for studying novel quantum materials," NIST/JILA Fellow Jun Ye said. "By using our atomic clock for quantum simulation, we hope to stimulate new insights and shed new light on emerging behaviors of topological systems that are useful for robust quantum information processing and spintronics."

Spin-orbit coupling is a key feature of topological materials--the subject of theoretical work honored in this year's Nobel Prize in physics--which conduct electricity on the surface but act as insulators on the inside. This characteristic could be used to make novel devices based on electron spin instead of the usual electric charge, and topological quantum computers, which in theory could make powerful calculations in new ways. But real materials like this are hard to make and study--atomic gases are purer and easier to control.

This area of research is fairly new. The first demonstration of spin-orbit coupling in a gas of atoms was achieved in 2011 by a NIST physicist at the Joint Quantum Institute.

The JILA clock has several features that make it a good mimic for crystalline solids. Researchers used lasers to probe the clock "ticks," the atoms' transition between two energy levels. The atoms' behavior then resembled that of electrons in a solid material in the presence of an external magnetic field, where the electrons have two spin states ("spin up" and "spin down"). When an atom was excited to a higher-energy state, the laws of physics required that energy and momentum be conserved, so the atom's momentum slowed.

The end result was a regular pattern of switching back and forth between the atoms' spin and momentum. The pattern occurred across thousands of atoms regularly spaced in the laser grid, or optical lattice, an analogy to the lattice structure of solid crystals. Because the excited atomic state lasted for 160 seconds, the researchers had ample time to make measurements without atom losses or heating.

The use of an atomic clock as a quantum simulator offers the prospect for real-time, nondestructive, measurements of atom dynamics in an optical lattice. The current clock and simulations have the atoms arranged in one dimension.

However, in the future, the researchers hope to couple multiple types of synthetic atomic spin states to create exotic behavior at more complex levels. Ye's team is developing a 3-D version of the atomic clock by adding more laser beams to form more lattices, which are expected to enable spin-orbit coupling in multiple dimensions.

S. Kolkowitz, S.L. Bromley, T. Bothwell, M.L.Wall, G.E. Marti, A.P. Koller, X. Zhang, A.M. Reyand J. Ye. Spin-orbit coupled fermions in an optical lattice clock. December 21, 2016. Nature. DOI


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
National Institute of Standards and Technology
Understanding Time and Space






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Stretching time to improve extreme event prediction
Paris, France (SPX) Dec 21, 2016
Stretching time scales to explore extreme events in nature seemed impossible, yet this feat is now conceivable thanks to a team from the Institut FEMTO-ST (CNRS/UFC/UTBM/ENSMM), which used an innovative measurement technique enabling the capture of such events in real time. This technique, which is currently applied in the field of photonics, could help predict rogue wave events1 on the oc ... read more


TIME AND SPACE
Molecular Velcro boosts microalgae's potential in biofuel, industrial applications

Ultrafast lasers reveal light-harvesting secrets of photosynthetic algae

People willing to pay more for new biofuels

Investing in the 'bioeconomy' could create jobs and reduce carbon emissions

TIME AND SPACE
Mimicking biological movements with soft robots

Marriage and more with robots: science fiction or new reality?

NIST device for detecting subatomic-scale motion may aid robotics, homeland security

A hardware-based approach for real world collaborative multi-robots

TIME AND SPACE
New rules for micro-grids in Alberta

Offshore wind makes U.S. debut

Apple invests in China wind farms

German energy company plants wind farm seed in Texas

TIME AND SPACE
VW reaches $1 bn compensation deal in 3.0-liter diesel case

U.S. funding more alternative vehicle efforts

China fines GM unit $29 million for 'price-fixing'

Uber puts brakes on self-driving cars in California

TIME AND SPACE
World's smallest electrical wire made from world's smallest diamonds

Scientists boost catalytic activity for key chemical reaction in fuel cells

Scientists build bacteria-powered battery on single sheet of paper

New approach captures the energy of slow motion

TIME AND SPACE
Researchers model the way into a nuclear future

Report finds additional radioactive materials in gas-well drill cuttings

Chemistry research breakthrough that could improve nuclear waste recycling technologies

Japan pulls plug on troubled fast breeder reactor

TIME AND SPACE
MIT Energy Initiative report provides guidance for evolving electric power sector

Toward energy solutions for northern regions

Energy-hungry Asia slowing down, lender says

US push to low-carbon future 'unstoppable': Biden

TIME AND SPACE
Amazonia's best and worst areas for carbon recovery revealed

Warming could slow upslope migration of trees

Better road planning could boost food production while protect forests

A roadmap for guiding development and conservation in the Amazon









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.