Solar Energy News  
MILITARY COMMUNICATIONS
Japan-Germany international joint experiment on space optical communication
by Staff Writers
Tokyo, Japan (SPX) Mar 29, 2021

The OSIRISv1 optical terminal, mounted on the University of Stuttgart's Flying Laptop satellite uses body pointing for tracking and this is the first time a successful experiment with such implementation is performed in Japan. As a result, valuable experimental data that will contribute to the research and development of future space optical communication technology has been acquired.

The National Institute of Information and Communications Technology has conducted an international joint experiment with the German Aerospace Center (DLR) between the optical terminal (OSIRISv1) onboard the University of Stuttgart's Flying Laptop satellite and NICT's optical ground station equipped with newly developed optical bench with fine-pointing system. In February 2021, success in receiving the downlink light from OSIRISv1 at NICT's optical ground station was achieved.

At the same time, an initial experiment of the newly developed atmospheric turbulence measuring device was performed successfully. Furthermore, a successful demonstration experiment using a simple optical ground station composed of low-cost commercial parts was conducted by receiving laser light from the satellite.

The OSIRISv1 optical terminal, mounted on the University of Stuttgart's Flying Laptop satellite uses body pointing for tracking and this is the first time a successful experiment with such implementation is performed in Japan. As a result, valuable experimental data that will contribute to the research and development of future space optical communication technology has been acquired.

NICT is conducting research and development of space optical communications for the advancement of future satellite communication. Between 2014 and 2016 multiple experiments were performed between the small optical communication transponder (SOTA) and not only optical ground stations in Japan, but also in Europe (German Space Agency (DLR), French National Centre for Space Studies (CNES), and European Space Agency (ESA)) and Canada (Canadian Space Agency (CSA)), and valuable space optical communication experiment data was acquired.

NICT has signed a joint research agreement with DLR, that has been developing several optical-communication payloads (OSIRIS). As a result, NICT has carried out an international joint experiment using the onboard optical terminal (OSIRISv1).

During this experimental phase that took place between the end of January and the beginning of February 2021, NICT planned experiments to receive the laser light from OSIRISv1 at the optical ground station in Tokyo, which is equipped with a 1-m telescope (Fig. 1).

In this experiment, NICT used the newly developed optical bench with fine-pointing system that has been developed for the future High Speed Communication with Advanced Laser Instrument (HICALI) experiments (Fig. 2), which performance was confirmed in advance. It is the first time an experiment with body-pointing implementation was conducted successfully in Japan.

In addition, in this experiment, NICT succeeded in the initial test of the newly-developed atmospheric-turbulence measuring device, which contribute for the estimation and mitigation of the atmospheric-turbulence effects on the space optical-communication links.

Furthermore, aiming for global spread of space optical communications, it is necessary to develop a small low-cost ground station. A small 20-cm-order off-the-shelf telescope was installed in parallel of the 1-meter optical ground station and successful experiments in receiving the downlink light (first light) were performed.

The collected valuable data during these successful experiments is important for the modelling of the atmospheric turbulence and tracking errors, and is expected to contribute to the further development of the space optical communication technology.

By proceeding with the analysis of the gathered experimental data, research and development of a complete easy-to-use receiving system with single-mode fiber coupling technology, low-noise optical amplification technology, and high-sensitivity receiving technology on the receiving side is planned.

This is expected to contribute to the development and popularization of space optical communication systems in future. Furthermore, this successful demonstration of international system interoperability with OSIRISv1/Flying Laptop is an important contribution for The Consultative Committee for Space Data Systems (CCSDS), where standardization of space optical-communication technology is currently taking place.


Related Links
National Institute Of Information And Communications Technology (NICT)
Read the latest in Military Space Communications Technology at SpaceWar.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


MILITARY COMMUNICATIONS
Parsons awarded $250M Seabed-to-Space ISR contract
Centreville VA (SPX) Mar 24, 2021
Parsons Corporation has been awarded a shared ceiling value $250 million indefinite-delivery, indefinite-quantity (IDIQ) multiple award task order contract by the Naval Information Warfare Center (NIWC) Pacific for research, development, test, and technical engineering for maritime intelligence, surveillance, and reconnaissance (ISR) and information operations. The contract has a three-year base period worth $145 million and a two-year option for $105 million. Parsons will provide the U.S. Navy th ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MILITARY COMMUNICATIONS
Carbon-neutral 'biofuel' from lakes

Turning wood into plastic

'Keep off the grass': the biofuel that could help us achieve net zero

Shrub willow as a bioenergy crop

MILITARY COMMUNICATIONS
Even without a brain, Penn Engineering's metal-eating robots can search for food

The largest European robotics and space event is counting down the time until take off!

A robot that senses hidden objects

US military must accelerate use of artificial intelligence, JAIC chief says

MILITARY COMMUNICATIONS
US to invest heavily to boost offshore wind farms

TechnipFMC enters partnership with Magnora to develop floating offshore wind projects

Field study shows icing can cost wind turbines up to 80% of power production

BP enters UK offshore wind sector

MILITARY COMMUNICATIONS
The road not taken: South Korea's self-driving professor

China's smartphone maker Xiaomi to invest $10bn in electric vehicles

VW pulls a fast one: 'Voltswagen' rebrand a ruse

VW seeks damages from ex-CEOs over dieselgate scandal

MILITARY COMMUNICATIONS
Thermal power nanogenerator created without solid moving parts

Is battery recycling environmentally friendly?

Cooling homes without warming the planet

Researchers harvest energy from radio waves to power wearable devices

MILITARY COMMUNICATIONS
New project to research nuclear decontamination robots

Framatome commissions high-precision measurement facility in Jeumont, France

How many countries are ready for nuclear-powered electricity?

Scientists find explanation for abnormally fast release of gas from nuclear fuel

MILITARY COMMUNICATIONS
How Biden's infrastructure plan addresses the climate crisis

World Bank to align financing with Paris Climate Accord

WTO to work with Europeans on legality of EU carbon tax plan

'Go big': Biden to launch sweeping infrastructure plan

MILITARY COMMUNICATIONS
Sharp increase in destruction of virgin forest in 2020

Coffee waste can accelerate the recovery of tropical forests

Rich nation appetites driving tropical deforestation

Indigenous people 'best guardians' of LatAm forests, says FAO









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.