Solar Energy News  
ROCKET SCIENCE
LISA Pathfinder carries advanced NASA thruster tech
by Staff Writers
Pasadena CA (JPL) Dec 04, 2015


The LISA Pathfinder spacecraft, which launched on Dec. 3, 2015, from Kourou, French Guiana, will help pave the way for a mission to detect gravitational waves. Image courtesy ESA. For a larger version of this image please go here.

The LISA Pathfinder spacecraft is on its way to space, having successfully launched from Kourou, French Guiana (Dec. 3 local time/Dec. 2 PST). On board is the state-of-the-art Disturbance Reduction System (DRS), a thruster technology developed at NASA's Jet Propulsion Laboratory, Pasadena, California.

LISA Pathfinder, led by the European Space Agency (ESA), is designed to test technologies that could one day detect gravitational waves. Gravitational waves, predicted by Einstein's theory of general relativity, are ripples in spacetime produced by any accelerating body. But the waves are so weak that Earth- or space-based observatories would likely only be able to directly detect such signals coming from massive astronomical systems, such as binary black holes or exploding stars. Detecting gravitational waves would be an important piece in the puzzle of how our universe began.

The incredible faintness of gravitational waves makes it critical to keep a spacecraft stable enough to detect them. But there are obstacles to staying completely still, even in seemingly empty space. Most notably, solar radiation pressure - the force exerted by sunlight - pushes on the spacecraft ever so delicately. In fact, the force of solar radiation pressure on LISA Pathfinder is analogous to the weight of a grain of sand on earth.

The Disturbance Reduction System uses colloid micronewton thrusters, the first of their kind, to keep the spacecraft as still as possible and compensate for solar pressure. These thrusters electrically charge small liquid droplets and accelerate them through an electric field in order to generate thrust. Developed by Busek Co., Natick, Massachusetts, with technical support from JPL, the thrusters will deliver 5 to 30 micronewtons of thrust (about the weight of a mosquito) continuously, with exquisite precision, to counteract the force of sunlight.

The DRS microthrusters aim to control the spacecraft's position to within a millionth of a millimeter, using software provided by NASA's Goddard Spaceflight Center, Greenbelt, Maryland.

"The DRS is one of the most precise thruster systems for a spacecraft ever qualified for use in space," said Phil Barela, DRS project manager at JPL.

To test the concept of gravitational-wave detection technology, LISA Pathfinder uses two cube-shaped test masses. These masses are objects designed to respond - to the greatest extent possible - only to gravity. They are made of a mixture of gold and platinum, which means they are very dense and also non-magnetic. Each weighs about 4 pounds (2 kilograms) and measures 1.8 inches (4.6 centimeters) on a side. The masses will float in separate vacuum chambers, 15 inches (38 centimeters) apart.

The spacecraft's position will be continuously adjusted using its ultra-precise thrusters to stay centered about these test masses. Using lasers, the position of the freely floating test masses will be measured, by an ESA-provided interferometer instrument, to an accuracy of 100,000th of the width of a human hair.

LISA Pathfinder will not directly detect gravitational waves, but it will demonstrate technologies necessary to observe these mysterious phenomena. A full-scale observatory could use the same kind of sensors, but they would be housed in three individual spacecraft separated by about 600,000 miles (1 million kilometers). Scientists could then measure how gravitational waves change the distance between the test masses, which would be a difference on the scale of picometers (one picometer is one trillionth of a meter).

"A system akin to the DRS could be used on a future gravitational-wave mission for stability," said Charles Dunn, project technologist for the DRS at JPL.

The DRS may also pave the way for similar advanced thruster systems like it to be used by other spacecraft. For example, a DRS-like system could be used to stabilize a future spacecraft that needs to be very still in order to detect exoplanets.

DRS could also be used for formation flying. For example, a constellation of small satellites could incorporate the thrusters in order to be perfectly synchronous while flying together. Even a single satellite in Earth orbit could benefit from DRS, as the system would allow for fine control of its path.

LISA Pathfinder launched on a Vega rocket and will take about seven weeks to reach its operational orbit. The spacecraft will orbit what is called the Lagrange Point L1, about 930,000 miles (1.5 million kilometers) from Earth in the direction of the sun.

The spacecraft will then begin a six-week commissioning period followed by eight months of technology demonstration. ESA's LISA Technology Package, with a different set of cold gas thrusters and separate software that controls them, will be demonstrated for the first four months. The DRS will be tested for about four months after that.

LISA Pathfinder is managed by ESA. The spacecraft was built by Airbus Defence and Space, Ltd. (UK). Airbus Defence and Space, GmbH (Germany), is the payload architect for the LISA Technology Package. The DRS is managed by JPL. The California Institute of Technology manages JPL for NASA.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
LISA Pathfinder at ESA
Rocket Science News at Space-Travel.Com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ROCKET SCIENCE
Wall-less Hall thruster may power future deep space missions
Washington DC (SPX) Oct 28, 2015
Hall thrusters are advanced electric rocket engines primarily used for station-keeping and attitude control of geosynchronous communication satellites and space probes. Recently, the launch of two satellites based on an all-electric bus has marked the debut of a new era - one in which Hall thrusters could be used not just to adjust orbits, but to power the voyage as well. Consuming 100 mil ... read more


ROCKET SCIENCE
OX2 wins concession for one of Sweden's largest biogas plants

Brazil pins renewable energy hopes on 2nd generation ethanol

A more efficient way of converting ethanol to a better alternative fuel

Now is the time to uncover the secrets of the Earth's microbiomes

ROCKET SCIENCE
UW roboticists learn to teach robots from babies

Kennedy now firmly established as a 21st Century Spaceport

These are the robots you're looking for

Japan shows off disaster-response robots at android fair

ROCKET SCIENCE
Pilot Hill Wind Project Closes Financing from GE and MetLife

German power giant RWE to spin off renewables business

Big UK cities vow to run on green energy by 2050

SeaPlanner New Features Launched on Nordsee One Offshore Wind Farm

ROCKET SCIENCE
Global bicycle ownership has halved in 30 years

GM to sell China-made vehicle in US first

Eliminating 'springback' to help make environmentally friendly cars

Lyft allies with Asia peers in Uber challenge

ROCKET SCIENCE
Scientists see the light on microsupercapacitors

Storing electricity in paper

Saft to supply LION batteries to power Textron control stations

36 countries launch world alliance for geothermal energy

ROCKET SCIENCE
Nuclear power as panacea for climate change? Experts divided

Ship carrying nuclear waste arrives in Australia

Hungary open to dialogue with EU over nuclear plant expansion

Nuclear power crucial for UN climate goal: top scientist

ROCKET SCIENCE
Addressing climate change should start with energy efficiency

CO2 emissions set for historic fall in 2015: study

Banks move to support sustainable transport sector

China vows massive clean-up of power plants: Xinhua

ROCKET SCIENCE
N. Korea 'declares war' on deforestation at Paris climate talks

At UN talks, African countries aim to restore 100 mn hectares of forest

Eyes in the sky track health of Earth's African 'lung'

'Traditional authority' linked to rates of deforestation in Africa









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.