Subscribe free to our newsletters via your
. Solar Energy News .




TECH SPACE
Landmark study proves that magnets can control heat and sound
by Staff Writers
Columbus OH (SPX) Mar 26, 2015


Researchers at The Ohio State University have discovered how to control heat with a magnetic field. An experiment proved that the phonon-the elementary particle that carries heat and sound-has magnetic properties. Here Joseph Heremans, Ohio Eminent Scholar in Nanotechnology, holds an artist's rendering of a phonon heating solid material. Artist's rendering by Renee Ripley. Image courtesy Kevin Fitzsimons and The Ohio State University.

Researchers at The Ohio State University have discovered how to control heat with a magnetic field. In the journal Nature Materials, they describe how a magnetic field roughly the size of a medical MRI reduced the amount of heat flowing through a semiconductor by 12 percent. The study is the first ever to prove that acoustic phonons - the elemental particles that transmit both heat and sound - have magnetic properties.

"This adds a new dimension to our understanding of acoustic waves," said Joseph Heremans, Ohio Eminent Scholar in Nanotechnology and professor of mechanical engineering at Ohio State. "We've shown that we can steer heat magnetically. With a strong enough magnetic field, we should be able to steer sound waves, too."

People might be surprised enough to learn that heat and sound have anything to do with each other, much less that either can be controlled by magnets, Heremans acknowledged. But both are expressions of the same form of energy, quantum mechanically speaking. So any force that controls one should control the other.

"Essentially, heat is the vibration of atoms," he explained. "Heat is conducted through materials by vibrations. The hotter a material is, the faster the atoms vibrate.

"Sound is the vibration of atoms, too," he continued. "It's through vibrations that I talk to you, because my vocal chords compress the air and create vibrations that travel to you, and you pick them up in your ears as sound."

The name "phonon" sounds a lot like "photon." That's because researchers consider them to be cousins: Photons are particles of light, and phonons are particles of heat and sound. But researchers have studied photons intensely for a hundred years - ever since Einstein discovered the photoelectric effect. Phonons haven't received as much attention, and so not as much is known about them beyond their properties of heat and sound.

This study shows that phonons have magnetic properties, too.

"We believe that these general properties are present in any solid," said Hyungyu Jin, Ohio State postdoctoral researcher and lead author of the study.

The implication: In materials such as glass, stone, plastic - materials that are not conventionally magnetic - heat can be controlled magnetically, if you have a powerful enough magnet. The effect would go unnoticed in metals, which transmit so much heat via electrons that any heat carried by phonons is negligible by comparison.

There won't be any practical applications of this discovery any time soon: 7-tesla magnets like the one used in the study don't exist outside of hospitals and laboratories, and the semiconductor had to be chilled to -450 degrees Fahrenheit (-268 degrees Celsius) - very close to absolute zero - to make the atoms in the material slow down enough for the phonons' movements to be detectible.

That's why the experiment was so difficult, Jin said. Taking a thermal measurement at such a low temperature was tricky. His solution was to take a piece of the semiconductor indium antimonide and shape it into a lopsided tuning fork. One arm of the fork was 4 mm wide and the other 1 mm wide. He planted heaters at the base of the arms.

The design worked because of a quirk in the behavior of the semiconductor at low temperatures. Normally, a material's ability to transfer heat would depend solely on the kind of atoms of which it is made. But at very low temperatures, such as the ones used in this experiment, another factor comes into play: the size of the sample being tested. Under those conditions, a larger sample can transfer heat faster than a smaller sample of the same material. That means that the larger arm of the tuning fork could transfer more heat than the smaller arm.

Heremans explained why
"Imagine that the tuning fork is a track, and the phonons flowing up from the base are runners on the track. The runners who take the narrow side of the fork barely have enough room to squeeze through, and they keep bumping into the walls of the track, which slows them down. The runners who take the wider track can run faster, because they have lots of room.

"All of them end up passing through the material - the question is how fast," he continued. "The more collisions they undergo, the slower they go."

In the experiment, Jin measured the temperature change in both arms of the tuning fork and subtracted one from the other, both with and without a 7-tesla magnetic field turned on.

In the absence of the magnetic field, the larger arm on the tuning fork transferred more heat than the smaller arm, just as the researchers expected. But in the presence of the magnetic field, heat flow through the larger arm slowed down by 12 percent.

So what changed? Heremans said that the magnetic field caused some of the phonons passing through the material to vibrate out of sync so that they bumped into one another, an effect identified and quantified through computer simulations performed by Nikolas Antolin, Oscar Restrepo and Wolfgang Windl, all of Ohio State's Department of Materials Science and Engineering.

In the larger arm, the freedom of movement worked against the phonons - they experienced more collisions. More phonons were knocked off course, and fewer - 12 percent fewer - passed through the material unscathed.

The phonons reacted to the magnetic field, so the particles must be sensitive to magnetism, the researchers concluded. Next, they plan to test whether they can deflect sound waves sideways with magnetic fields.

Co-authors on the study included Stephen Boona, a postdoctoral researcher in mechanical and aerospace engineering; and Roberto Myers, an associate professor of materials science and engineering, electrical and computer engineering and physics.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Columbus OH (SPX) Mar 26, 2015
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Many plastics labeled 'biodegradable' don't break down as expected
Washington DC (SPX) Mar 23, 2015
Plastic products advertised as biodegradable have recently emerged, but they sound almost too good to be true. Scientists have now found out that, at least for now, consumers have good reason to doubt these claims. In a new study appearing in the ACS journal Environmental Science and Technology, plastics designed to degrade didn't break down any faster than their more conventional counterp ... read more


TECH SPACE
Weltec Biopower Builds 500-kW Biogas Plant for Vegetable Producer

Chinese airline completes cooking oil fuel flight

Supercomputers help solve puzzle-like bond for biofuels

Scientists engineer faster-growing trees ideal for biofuel

TECH SPACE
Robot finds bodily posture may affect memory and learning

USAF funds sense-and-avoid technology development

Robotic materials: Changing with the world around them

Robotic SPACE Explorers Need Smarts to Survive

TECH SPACE
U.S. to fund bigger wind turbine blades

Gamesa and AREVA create the joint-venture Adwen

Time ripe for Atlantic wind, advocates say

Wind energy: TUV Rheinland supervises Senvion sale

TECH SPACE
Uber ramps up safety efforts after criticism

Pirelli boss attacks 'nationalist' China deal critics

Chinese takeover of Pirelli met with resignation in Italy

Hidden benefits of electric vehicles revealed

TECH SPACE
Superconductivity breakthroughs

You can't play checkers with charge ordering

Researchers increase energy density of lithium storage materials

New Li-ion battery uses safer more powerful electrode materials

TECH SPACE
NE China nuclear plant generator operational

Hungary reaches EU deal on nuclear fuel from Russia

Jordan agrees deal for Russia to build nuclear plant

Nearly all fuel inside Fukushima reactor melted: TEPCO

TECH SPACE
Energy company Eneco is heating homes with computer servers

Polish Power Exchange hosts 18th AFM Annual Conference

Reducing emissions with a more effective carbon capture method

China to further streamline energy layout amid "new normal"

TECH SPACE
Forests for water in eastern Amazonia

Amazon's carbon uptake declines as trees die faster

Study: Only two intact forests left on Earth

Conifers' helicoptering seeds are result of long evolutionary experiment




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.