![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Kanazawa, Japan (SPX) Mar 01, 2019
Researchers have layered different mineral forms of titanium oxide on top of one another to improve perovskite-type solar cell efficiency by one-sixth. The layered titanium oxide layer was better able to transport electrons from the center of the cell to its electrodes. This novel approach could be used to fabricate even more efficient perovskite-type solar cells in future. While most solar cells are made of silicon, such cells are difficult to manufacture, requiring vacuum chambers and temperatures above 1000C. Research efforts have therefore recently focused on a new type of solar cell, based on metal halide perovskites. Perovskite solutions can be inexpensively printed to create more efficient, inexpensive solar cells. In solar cells perovskites can turn light into electricity - but they have to be sandwiched between a negative and positive electrode. One of these electrodes has to be transparent, however, to allow the sun's light to reach the perovskites. Not only that, any other materials used to help charges flow from the perovskites to the electrode must also be transparent. Researchers have previously found that thin layers of titanium oxide are both transparent and able to transport electrons to the electrode. Now, a Japan-based research team centered at Kanazawa University has carried out a more detailed study into perovskite solar cells using electron transport layers made of anatase and brookite, which are different mineral forms of titanium oxide. They compared the impact of using either pure anatase or brookite or combination layers (anatase on top of brookite or brookite on top of anatase). The team's study was recently published in the ACS journal Nano Letters. The anatase layers were fabricated by spraying solutions onto glass coated with a transparent electrode that was heated to 450C. Meanwhile, the researchers used water-soluble brookite nanoparticles to create the brookite layers, as water-soluble inks are more environmentally friendly than conventional inks. These nanoparticles have been yielded poor results in the past; however, the team predicted that combination layers would solve the issues previously encountered when using the nanoparticles. "By layering brookite on top of anatase we were able to improve solar cell efficiency by up to 16.82%," study coauthor Koji Tomita says. These results open up a new way to optimize perovskite solar cells, namely via the controlled stacking and manipulation of the different mineral forms of titanium oxide. "Using different mineral phases and combinations of these phases allows for better control of the electron transport out of the perovskite layer and also stops charges from recombining at the border between the perovskite material and the electron transport layer," says first author Md. Shahiduzzaman. "Together, both these effects allow us to achieve higher solar cell efficiencies." Understanding how to create more efficient perovskite solar cells is important for developing a new generation of printable, low-cost solar cells that could provide affordable clean energy in the future.
![]() ![]() Solar Payback Trends 2019 Oslo, Norway (SPX) Feb 27, 2019 Thanks to falling solar panel prices and increased CO2 cost for dirty fuels, payback times for solar power for consumers was way down in Europe in 2018. Payback times are the layman's way of translating the economics of solar energy into something practicable. By dividing the full cost of the solar panels by their yearly output in energy multiplied by the cost of electricity, one finds the number of years needed to pay back the cost of the system. This report analyzes eight European markets ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |